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PARACOMPACT SUBSETS 

C. E. AULL 

Blacksburg 

In this paper, we distinguish 3 types of paracompact subsets and 2 types of 
countably paracompact subsets. 

Definition 1. A subset M of a topological space (X, 2T) is a-paracompact 
(a-paracompact) if every open cover by members of ST has an open locally finite 
(d-locally finite) refinement by members of 3T. 

Definition 2. A subset M of a topological space (X, 9~) is a-countably para­
compact if every countable open cover by members of 2T has an open locally finite 
refinement by members of £T. 

In the above definitions the refinements are locally finite or cr-locally finite 
with respect to all points of X and not just points of M. 

Definition 3. A subset M of a topological space is ^-paracompact (fi-countably 
paracompact) if M is a paracompact (countably paracompact) subspace. 

We shall need also the following definition. 

Definition 4. A subset M of a topological space is a-collectionwise normal if for 
every discrete family {Da}9 Da cz M, there is a pairwise disjoint family of open sets 
{Ga} such that Da c: Ga for every a. 

In the literature the term paracompact subsets generally refers to ^-paracompact 
subsets. Clearly every a-paracompact set is cr-paracompact and every cr-paracompact 
set in a regular space is /?-paracompact. See Michael [7, 834]. In this paper we will 
prove the following: A ^paracompact subset of a regular normal space is cr-para-
compact iff it is a-collectionwise normal and a generalized Fff; in a regular normal 
space, closed cr-paracompact subsets are a-paracompact. 

In order to prove the latter result, it will first be proved that in a normal space 
a closed /?-countably paracompact subset is a-countably paracompact. It will also be 
proved that closed subsets of the interior of jS-paracompact subsets in normal spaces 
are a-paracompact (Theorem 1). 

The a-paracompact subsets will be shown to behave in many respects as compact 
subsets (Theorems 4 — 7 and corollaries 12A and 12B). For instance in a T2 space, 
two disjoint a-paracompact subsets are strongly separated, cr-paracompact subsets 
have certain similarities to Lindelof subsets (Theorem 13). In the definition of a-
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paracompact subsets, <x-locally finite may be replaced by tr-discrete in regular 
normal spaces. 

In general the notation of Kelley will be used. We will use a and b as subscripts 
with the understanding that a and b are members of arbitrary sets A and B respectively 
without refering specifically to the index sets. The convention T3 = Tx + regular 
and all similar conventions will be used here. The definitions of locally dense and 
generalized Fa set may be found in Corson and Michael [4]. 

Some Basic Theorems 

Theorem 1. Let F be a closed subset of the interior, G, of a closed ^-paracompact 
(P-countably paracompact) subset M of a topological space (X,$~). Then F is 
a-paracompact (a-countably paracompact). 

Proof. Let °U be an open cover of F. The family consisting of {U n M : U e tfl} 
and the set M ^ F is an open cover of M using the relative topology for M and has 
a locally finite open refinement with respect to M. Let °T consist of members of this 
refinement contained in a member of {U n M : U e %}. Let # " = { V n G : V e "T). 
For Ve TT, V = Tn M where Tis open in X. So W = Vn G is open in X. Since M 
is closed, if is locally finite with respect to points of ~ M . Hence iV is a locally 
finite open refinement of °U and F is a-paracompact. The proof involving countably 
paracompact subsets is similar. 

Corollary 1A. A closed subset of a paracompact (countably paracompact) 
space is a-paracompact (a-countably paracompact). 

Corollary IB. Let F be a closed subset of the interior G of a fl-paracompact 
subset M of a normal topological space (X, 3T). Then F is a-paracompact. 

Proof. Since (X, 3T) is normal, there exists an open set Vsuch that F c Vc 
cz Vu G. Vis jS-paracompact and by Theorem 1, F is a-paracompact. 

For countably paracompact subsets there is an analogous result, but we can 
obtain a stronger result. 

Theorem 2. Let F be a closed P-countably paracompact set in a normal space. 
Then F is a-countably paracompact. 

Proof. Let {Un} be a countable open cover of F. It follows from a theorem of 
Dowker [5,220] that there is a family of relative open sets with respect to F, {V„}, 
such that {Vn} covers F and Vn cz Un9 where Vn is the relative closure with respect to F 
of Vn. Since F is closed Vn is closed in X. By the normality property, there exists an 
open cover {Wn} (open in X) of F such that Vn cz Wn c Wn c Un. Set W = \JWn. 
Let G be open and such that F cz G c G <-= W. Set Tt = Ut n G; Tn = (Un n G) ~ 
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n - l 

~ U Wk. Clearly {Tn} is open in X and is a refinement of {Un}. If x e F, there exists m 

such that x e Um and x $ Uk for k < m; so x e Tm and {Tn} is a cover of F. It remains 
to show that {Tn} is locally finite in regard to all points of X. If x $ W9 ~ G is a neigh­
borhood of x not intersecting Tn for any n. If x e IV, there exists m such that x e Wm 

and x <£ Wk for k < m. Wm intersects at most a finite number of Tn. 
Later we will show that in regular collectionwise normal spaces, an analogous 

result is satisfied for paracompact subsets. We now use Theorem 2 to relate cr-para-
compact subsets to a-paracompact subsets. 

Theorem 3. Let M be a o-paracompact9 a-countably paracompact subset in 
a topological space (X9 3

r). Then M is a-paracompact. 

Proof. Let °U be an open cover of M. There is an open cr-locally finite refinement 
of <%9 <T = \jrn where each TTB is locally finite. Let Wn = J{V: Ve rn}. Then {Wn} 
is a countable open cover of M with countable open locally finite refinement {Tn}. 
Let Sfn = {Vn Tn : Ve Tn}9 Sf = {)Sfn. For xeX9 there exists a neighborhood Nx 

intersecting a finite number of {Tn}9 Txl9 Tx2, ..., Txm. There exist neighborhoods 
Nxl9 Nx29..., Nxm intersecting a finite number of members of Sfxl9 Sfxl9..., Sfxm9 

m 

respectively. Set Nx0 = Nx. The intersection f) Nxi is a neighborhood of x intersecting 
i = 0 

a finite number of members of Sf. 

Corollary 3. A o-paracompact closed subset of a normal regular space is 
a-paracompact. 

Proof. Theorems 2 and 3 and the fact that in regular spaces <7-paracompact 
subsets are j8-paracompact and hence /?-countably paracompact. 

Properties of a-Paracompaet Subsets 

We now turn to some theorems about a-paracompact subsets, in which these 
subsets behave similar to compact subsets. We will use the terminology A is strongly 
separated from B to indicate that there are disjoint open sets U and V containing A 
and B respectively. 

Theorem 4. Let {X9 &~) be T2 and let M be a-paracompact and let x £ M. Then x 
and M are strongly separated. 

Proof. Since X is Tl9 for y e M. there exists open Uy such that x£Uy. The 
cover {Uy : y e M} has an open locally finite refinement {Va}. x <fc Va so \JVa and 
~K)Va are disjoint open sets containing M and [x] respectively. 

Corollary 4. In a T2 space, every a-paracompact subset is closed. 

The proofs of the next two theorems are similar to that of Theorem 4. 
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Theorem 5. Let (X, 2T) be T2 and let M and N be disjoint a-paracompact 
subsets. Then M and N are strongly separated. 

A. H. Stone [8,363] proved that a necessary and sufficient condition for a space S 
to be metrizable where S = St u S2 are open and metrizable is that F r ^ ) and Fr(S2) 
are strongly separated. From the above theorem this will happen iff these boundaries 
are a-paracompact. 

Theorem 6. Let (X, 2T) be regular and let M be a-paracompact and F closed, 
M n F = 0. Then M is strongly separated from F. 

It is clear that the known theorems of Dieudonne that T2 paracompact spaces 
are T4 and regular paracompact spaces are normal follow from Theorems 5 and 6 
respectively. 

Theorem 7. In a regular space the closure of an a-paracompact subset is 
a-paracompact. 

Proof. Let °U be an open cover of M where M is a-paracompact. Let {Va} be an 
open locally finite refinement of % that covers M, For each x and each Va such that 
x e Va9 there is an open set Wxa such that x e Wxa c Wxa c Va. The family {Wxa} 
is an open cover of M and has an open locally finite refinement {Tb}. M c [JTb cz 
cz (JVfl, so {Va} is a cover of M. 

a-Paracompact subsets 

In this section the properties of cr-paracompact subsets and the relations of these 
subsets with jS-paracompact subsets are discussed. 

The next theorem is a modification of a theorem of Bing [3,177]. 

Theorem 8. A a-paracompact subset in a regular space is a-collectionwise 
normal. 

Proof. Let M be cr-paracompact and let {Da} be a discrete family of subsets 
of M. Let % be an open cover of M such that the closure of each member intersects 
at most one member of {Da}. °U has an open cr-locally finite refinement f = (J^n 
where each i^n is a locally finite family. For each a, let Wan be the union of members 

n oo 

of rn intersecting Da. Set Tan = Wan ~ (J \J{Wbk : b * a} and set Ta = (J Tan. {Ta} 
fe=l b n = l 

is a family of pairwise disjoint open sets such that Da c Ta. 

Theorem 9. A locally dense ^-paracompact subset of a regular space {X,ST) 
is a-collectionwise normal. 

Proof. Let M be ^-paracompact and locally dense. M is then dense in an open 
set G using the relative topology for G. Let {Da}, Da cz M, be discrete in X and hence 
discrete in M. Since M is /?-paracompact, there is a pairwise disjoint family of sets, 
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{Ua}, open in M such that Da cz Ua. Ua = Va r. M where Vfl is open in G and hence 
open in X. Assume Va n Vb 4= 0 for some a 4= ft. Then there is a non-null subset of 
G ~ M contrary to M being dense in G. So the members of {Vfl} are pairwise disjoint. 

Theorem 10. Let (X,2T) be a normal regular topological space. Let a /?-
paracompact, a-collectionwise normal, subset M be a generalized Fa-subset. Then 
every open cover of M (using the topology for X) has an open o-discrete refinement 
and M is o-paracompact. 

Because of the similarity of the proof to the proof of Theorem 5.2 of Corson 
and Michael [4,356], we omit the proof. 

Theorem 11. A o-paracompact subset of a regular space (X, ST) is a genera­
lized F a. 

Proof. Let M be cr-paracompact. Let G be an open set such that M cz G. For 
x e M, there is a closed neighborhood Cx such that Cx cz G. Let *f~ = \Ji^n be an 
open (i-locally finite refinement of {int Cx : x e M} where each i/r

n is locally finite. 
For each n let Fn = \J(V: Ve T T J . The set H = (JFn is such that M cz H cz G so 
that M is a generalized F^. 

Corollary 11A. A ^-paracompact subset of a normal regular space is o-
paracompact iff it is a-collectionwise normal and a generalized Fa. 

Proof. Theorems 8, 10, and 11. 

CoroUary 11B. A closed ^-paracompact subset of a normal regular space is 
a-paracompact iff it is a-collectionwise normal. 

Proof. Theorem 8 and Corollaries 3 and 11 A. 

Corollary 11C. Let {X,3~) be normal and regular. A ^-paracompact, locally 
dense subset is o-paracompact iff it is a generalized Fa. 

Proof. Theorem 9 and Corollary 11 A. 

Corollary 11D. A subset M of a normal regular space (X, 3") is o-paracompact 
iff every open cover by members of 2T has an open o-discrete refinement. 

Proof. Theorems 8, 10, and 11. 

CoroUary HE. In collectionwise normal, perfectly normal spaces, every /?-
paracompact subset is o-paracompact. 

Theorem 12. Let a o-paracompact subset M be the complement of an a-
paracompact subset in a T2 space. Then M is an Fa. 

Proof. By Theorem 4, there exists a closed neighborhood Cx of x such that 
Cx cz M for x E M. The proof is now similar to Theorem 11 noting that M is open. 
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Corollary 12A. An a-paracompact subset M of a T2 hereditary Lindelof space 
is a Gb. 

Corollary 12B. An a-paracompact subset in a T2 space with a o-locally finite 
base is a Gd. 

For compact subsets, one may substitute point-countable base for cr-locally 
finite base in the above corollary. See Aull [2]. 

Theorem 6 shows that two disjoint subsets one a-paracompact and the other 
closed are strongly separated in a regular space. For a-paracompact subsets we have 
the following theorem. 

Theorem 13. Let F and H be two closed a-paracompact subsets in a regular 
space. Then F and H are strongly separated. 

Proof. For x e F, there exists a closed neighborhood Cx such that Cx n H — Qn 

The family {Cx : x e F} has an open d-Iocally finite refinement % = \]°lln and each °tt. 
is an open locally finite family. If Ue<%, U n H = 0. Let Vn = U{^ - U e %}. 
Vn is open and V„ n H = 0. Similarly, one can construct a countable open cover of H, 

n 

{Wn}9 such that Wn n F = 0. Let Sn = Vn ~ U Wk and S = \JStt and let Tn = Wn ~ 
n k=l 

~ U Vk and F = \JTn. S and Fare disjoint open sets containing F and H respectively. 
k=l 

Corollary 13. In a regular space, two disjoint closed Lindelof subsets are strongly 
separated. 

The example of Niemytski of a T3a space that is not F4 contains a closed o-
paracompact subset that is not a-paracompact and a closed /?-paracompact subset 
that is not cr-paracompact. 

Example. Let X be the upper half plane including the x-axis. If y0 > 0, let 
Hausdorff neighborhoods of (x0, y0) be the usual neighborhoods of the plane rela­
tivized with respect to X. If y0 = 0, let Hausdorff neighborhoods of (x0, 0) consist 
of open circles with center (x0, y) and radius y with the point (x0, 0) for each y > 0. 

It is known that the set R of rationals on the x-axis and the set / of irrationals on 
the x-axis are disjoint closed sets which are not strongly separated. See Vaidyanat-
haswamy [9, 153], R is cr-paracompact, but not a-paracompact by Theorem 6 and 
by Theorem 3 not even a-countably paracompact. By Theorem 13, I is not o-
paracompact though it is j8-paracompact. 

Some Further Remarks 

In general countable unions of /?-paracompact subsets are not /?-paracompact as 
pointed out by Corson and Michael [4,356]. On the other hand countable unions 
of cr-paracompact subsets are a-paracompact. From this fact we can show that there 
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exists a /^-paracompact closed set in a perfectly normal Tx space that is not a-
paracompact. 

The closed set Fp of [3, example H] of Bing has this property. Fp and its 
complement F ~ Fp are both metrizable, the latter being an Fa and in fact a-
paracompact. Corson and Michael [4,359] noted that this space F is not paracompact. 
Thus Fp cannot be cr-paracompact. It is interesting to note that Fp is a-countably 
paracompact. 

However with /3-countably paracompact subsets we have the following theorem. 

Theorem 14. Let {Mn} be a countable family of Fff, [1-countably paracompact 
subsets in a normal space (X, ST), Then M = \JMn is p-countably paracompact. 

Proof. Let {Uk} be a countable open cover of M. Mansfield [6,445] has shown 
that a normal space is countably paracompact iff every countable open cover has 
a closed a-discrete refinement. Let Q be a member of {Mn}. So there is a cr-discrete 
relative closed refinement of {Uk}, S3 — \JtMm where each 3fin is discrete and closed 
with respect to Q. There exists a countable family of closed sets (FJ such that 
Q = U^Y For fixed i and n9 the family {Ff n B : B e &„} is closed and discrete with 
respect to X and the theorem follows, again using the result of Mansfield. 

For some additional properties of a-countably paracompact subsets, see Aull [1], 
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