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A FORMAL CONNECTION BETWEEN PROJECTIVENESS 
FOR COMPACT AND NOT NECESSARILY COMPACT 
COMPLETELY REGULAR SPACES 

J. MIODUSZEWSKI and L. RUDOLF 

Wroclaw 

The purpose of this note is to give a formal connection between the notions of 
projective spaces and projective resolutions for compact and non-compact completely 
regular spaces. The compact case was considered by Gleason [2] and Rainwater [7], 
and the non-compact one by Iliadis [5], Ponomarev [6] and Flachsmeyer [ l ] (let us 
remark that some results of these papers are valid for Hausdorff or regular spaces, 
too; in [5] and [6] there was considered in fact a notion of "absolute space" closely 
related to the projectiveness). We show that the general case reduces to the compact 
one. 

Let C be a category. An object P is said to be projective with respect to a class A 
of morphisms of the category iff for eachfe_4 and each g in C there exists a morphism 
in C completing the diagram 

p \ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
x — y 

In the category of compact completely regular spaces projective spaces are 
assumed to be projective objects with respect to the class A of all mappings onto. The 
class of all projective spaces of this category is equal to each of the class of spaces: 

1. all extremally disconnected spaces, 
2. all spaces each mapping onto which is a retraction. 

The first assertion is known e.g. from [2], the proof of the second one is purely 
formal 

By a projective resolution with respect to A of an object X of the category C 
we mean a projective object aX and a morphism ocx : aX -»X from A, which is 
irreducible with respect to A, i.e. for no proper subobject S of aX the composite 
morphism S -• aX -> X belongs to A. If a morphism p : Z -> X from A is a semi-
monomorphism, i.e. the equality p ° q = p implies that p is the identity, and Z is 
projective, then p is irreducible; such a semimonomorphism p : Z -• X is unique 
for X up to an isomorphism. Clearly, for each morphism f: Y -* X, where Y is 
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projective, there exists a morphism f+ completing the diagram 

c*Xv 

V* 

In [2] and [7] the existence of projective resolutions is showed for the category 

of compact completely regular spaces; in [7] the uniqueness follows from the fact 

that ax is a semimonomorphism. The meaning of subobject is a compact ( = closed) 

subspace. The problem whether f% is uniquely determined by /, i.e. that of the 

functorial character of operation a, was considered by Henriksen and Jerison [4], 

The answer is "yes" iff mapping / is such that Int f~i(A) = /""^Int A) for each 

regularly closed subset A of X. 

In the category of completely regular spaces, in order to exclude the triviality 

( = discreteness), projective spaces are assumed to be projective objects with respect 

to the class A of all perfect mappings onto, i.e. closed mappings onto, for which all 

inverse images of points are compact. Perfect mappings are characterized by Henrik

sen and Isbell [3] as such mappings / : Y > X for which the induced mappings 

/?/:/?Y->/>K in the Cech-Stone compactification transform pY — Y into (in fact, 

onto) pX — X. In the proofs of theorems which follow only this formal property of 

perfect mappings is used. 

The class of all projective spaces just defined is equal to each of the class of 

spaces: 

V. all extremally disconnected spaces, 

2'. all spaces each perfect mapping onto which is a retraction 

(the first assertion is known from [l]). 

Now, if X is a completely regular space, we construct aX, the projective resolu
tion of X, taking firstly fiX and a/iX, the projective resolution of fIX, and then the 
uniformization (pullback diagram) 

— oc/3X 

/ЗX 

•px 

of the Cech-Stone embedding Px

 a11d of the projective covering afiX. Mapping Z -» X 

is the desired projective resolution ax : aX -» X of K. The proof of this fact reduces 
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to the showing that Z is projective ( = extremally disconnected) and that Z -> X is 
a perfect semimonomorphism onto. By the way, Z -> a/?K occurs to be the Cech-Stone 
embedding. Hence, the operations a and /? commute. More precisely, the diagram 

ocßX = ßocX 

commutes (see [5]). 
If we restrict the considerations of mappings / : Y -> X to the class considered 

in [4], the operation a is functorial, and only in this case. 
The proofs will be published in Colloquium Mathematicum. 
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