
Toposym 2

William Wistar Comfort
Locally compact realcompactifications

In: (ed.): General Topology and its Relations to Modern Analysis and Algebra, Proceedings of the
second Prague topological symposium, 1966. Academia Publishing House of the Czechoslovak
Academy of Sciences, Praha, 1967. pp. 95--100.

Persistent URL: http://dml.cz/dmlcz/700878

Terms of use:
© Institute of Mathematics AS CR, 1967

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/700878
http://project.dml.cz


95 

LOCALLY COMPACT REALCOMPACTIFICATIONS 

W. W. COMFORT1) 

Amherst 

I'd like to begin this talk by citing a theorem which will appear in a paper I 
co-authored recently with Stelios Negrepontis. I hope and believe that the theorem 
has, as they say, merit and interest in its own right, but at this moment I do not want 
to dwell at all upon the theorem itself and its proof, but rather to deduce from it 
a number of consequences. As you will notice, each of these consequences has among 
its hypotheses one of the two following somewhat artificial conditions: either 
"vX is locally compact" or "vX is a k-space". This talk is to be devoted chiefly to 
a study of the first of these two conditions. 

(Incidentally, perhaps it is reasonable to remind you of the main properties 
enjoyed by vX, the Hewitt realcompactification of the completely regular Hausdorff 
space X. It is realcompact, of course — i.e., homeomorphic to a closed subset of 
a product of lines — and roughly speaking it does for the ring C(X) of real-valued 
continuous functions on X about what the Stone-Cech compactification fiX does for 
the ring C*(X) of bounded elements of C(X). Let me be more specific. Each continuous 
function mapping X into the real line, or in fact into any realcompact space whatever, 
admits a continuous extension mapping vX into that same realcompact space. And vX 
is the only such realcompact space containing X densely. As Gillman and Jerison 
remind us gently in their remarkable work [3], the symbol v is the Greek upsilon, 
not nu. In a letter dated 24 May 1966, Edwin Hewitt, reflecting back on his original 
paper [6], writes "I chose upsilon by some crude association with the word 'un
bounded', just as Cech probably chose '/T because he was thinking of bounded 
functions." If Hewitt's conjecture is correct and the word "bounded" was paramount 
in Cech's mind when he embedded X in a product of bounded intervals indexed by 
bounded continuous real-valued functions on X, one might reasonably wonder today 
whether it did not also occur to Cech, first as a sort of play on words and then as 
a subject for serious speculation, to embed X in a product of unbounded intervals 
indexed by unbounded continuous real-valued functions on X. Given the premise I 
believe the conclusion to be more than likely, but so far as I am aware there is no 
concrete evidence to suggest that Cech was at any time on the verge of constructing 

*) The author gratefully acknowledges support from the National Science Foundation under 
contract NSF GP-5750. He also thanks the Research Council of the University of Massachusetts 
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the space which we know today as the Hewitt realcompactification. My own guess, 
based solely on a perusal of Cecil's paper [ l ] , is that the symbol /?, if indeed it had 
any particular significance in Cecil's mind, properly stands not for the word 
"bounded" but for the word "bicompact".) 

I beg your pardon for that unexpectedly lengthy parenthetical digression, and I 
now return to that Negrepontis theorem I promised you. It asserts, or at least one of 
its easy consequences asserts, that // Yis a compact space of nonmeasurable cardinal, 
then v(X x Y) = vX x Yfor every space X. A reformulation looks like this: If Y 
is a compact space of nonmeasurable cardinal, then for each space X every function 
in C(X x Y) is the restriction to X x Y of some function in C(vX x Y). If the 
cardinality hypothesis is omitted and measurable cardinals exist, by the way, then the 
resulting assertion is false. Since any compact space is its own Flewitt realcompactifica
tion, the theorem I just cited may be viewed as furnishing a criterion sufficient for the 
relation v(X x Y) = vX x vY, and it is in this setting that I wish you would consider 
it. It is not the only such theorem known. The doctoral dissertation [5] of Anthony 
W. Hager contains an interesting result of the same form, based on this beautiful 
theorem of Glicksberg [4] which was reproved very elegantly by Frolik in [2]: 
In order that p(X x Y) = fix x /?Y, where X and Yare infinite spaces, it is necessary 
and sufficient that X x Y be pseudocompact. This Glicksberg-Frolik theorem is, as 
a matter of fact, the genesis of the paper I am discussing with you now. Seeking the "»" 
analogue of that " / } " theorem, we would like to have conditions on X and Y necessary 
and sufficient that the relation v(X x Y) = vX x uYbe valid. We are considering 
throughout only completely regular Hausdorff spaces. 

To avoid senseless repetition and in the interest of simplicity, I'll assume now 
that any space which arises in future discussion is of nonmeasurable cardinal. Suppose 
now that Y, instead of being compact, is assumed simply to be locally compact. And 
l e t / e C(X x Y). According to the Negrepontis theorem I just quoted, each point y 
of Y admits a (compact) neighborhood 17 with the property that the restriction of 
the function / to the space X x U extends continuously to vX x 17. Using this 
observation we can construct a well-defined function on all of D I X Y which agrees 
with / on X x Y and which is locally continuous. Of course a locally continuous 
function is continuous, so our construction actually yields the following result. 

Corollary. If Yis locally compact and realcompact, then v(X x Y) = vX x Y = 
= vX x vYfor each space X. 

Suppose now that Y is a k-space, so that in particular each real-valued function 
on Y continuous on each compact subset of Y is automatically continuous on Y. 
Then Y x Z is a k-space for any locally compact space Z, and so we have: If Yis 
a k-space and vX is locally compact, then v(X x Y) = vX x vY. (You can prove that 
theorem for yourself by applying the corollary above two times, firstly to sets of the 
form X x U where U is compact in Y, and secondly to the space Y x vX9 which now 
satisfies the hypotheses imposed in the corollary upon X x Y.) 
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The same sort of interchange allows us to prove the following result, where as 
before both X and Yare subject to our standing nonmeasurability hypothesis. 

Corollary. If vX x Y and vX x vY are both k-spaces, then v(X x Y) = 
= vX x vY. 

I hope that what I have said so far suffices to convince you that any serious study 
of the relation v(X x Y) = vX x OYis likely to involve a study of the property "vX 
is locally compact". 

By way of initiating this study I want to present a new proof of a result which I 
believe should be called a Hager-Johnson theorem. The theorem appears in Hager's 
thesis [5], with a lengthy, ingenious, indirect proof concocted by D. G. Johnson. 
The proof I want to show you now has no advantage over that of [5], except that it 
is more simple and more direct. 

Theorem (Hager-Johnson). 1f U is open in X and c\vX U is compact, then clx U 
is pseudocompact. 

Proof. Hoping to achieve a contradiction, let us suppose that some continuous 
real-valued function f with domain clx U is unbounded. Since f is unbounded on U, 
we can, beginning with any point xt in U, construct inductively a sequence of points xn 

in U for which |f(xw + 1) | > |f(x„)| + 1. Now for each n let gn be a continuous function 
on X for which gn(xn) = n and for which gn(x) = 0 whenever \f(xn) — f(x)\ ^ \. 
It is clear that each point of X admits a neighborhood throughout which every one of 
the functions g„, with at most one exception, vanishes identically. (Specifically, one 
can choose for a neighborhood of x the setf_1((f(x) — \,f(x) + i)).) Therefore the 

00 

function g defined on X by the relation g = £ gn is continuous. Being an element 
n = l 

of C(X), g extends continuously to vX. But this extension is, like g itself, unbounded 
on U. Hence it is unbounded on the compact space cluX U. We have achieved the 
desired contradiction. 

This theorem of Hager-Johnson allows us to describe a relation between the 
local compactness of vX and the local pseudocompactness of X itself. The concept of 
local pseudocompactness has, so far as I am aware, been avoided by mathematicians, 
and I regret the necessity of introducing it to you now. I shall use the term to mean 
just what it ought to mean. 

Definition. A space is locally pseudocompact at its point x if there is a local 
neighborhood base at x consisting of pseudocompact sets. 

Since the closure of an open subset of a pseudocompact space is pseudocompact, 
and since the completely regular Hausdorff spaces we are considering are surely 
regular, a space is locally pseudocompact at the point x if and only if x admits 
a pseudocompact neighborhood. If a space is locally pseudocompact at each of its 
points, I shall say simply that the space is locally pseudocompact. 
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Theorem, In order that X be locally pseudocompact, it is necessary and suffi
cient that there exist a locally compact space Yfor which X a Y <z vX. 

Proof. The sufficiency is easy, because if Yis as hypothesized and x is a point 
of X, then some neighborhood of x in Y(let's call it K) is compact. The set intx(K n X) 
is an open neighborhood of x in X whose closure in vX is compact, so by the Flager-
Johnson theorem its closure in X is a pseudocompact neighborhood of x in X. 

The necessity is not much harder, although a complete proof involves checking 
a few details which have no independent interest. Let me outline it quickly for you. 
For each point x in X we select a pseudocompact neighborhood Ux of x and a con
tinuous function fx mapping X into [0, 1] such that fx(x) = 0 and fx = 1 off Ux. 
If gx is the continuous extension offx with domain vX, let Vx r denote, for 0 < r < 1, 
the set g~x([0, r)). Finally, define 

Y= U cloXVX9f. 
xeX 

0 < r < l 

It's obvious that X cz Y cz nX. The local compactness of Y follows from the fact 
that if, for a fixed r < 1, the number s is chosen so that r < s < 1, then c\vX Vxr cz 
cz VX)S, and the closure of the latter set in Y, being both pseudocompact and real-
compact, is actually compact. This shows that each point of Y admits a compact 
neighborhood in Y, so I'm sure we can agree: Yis locally compact. 

There is an easy corollary to the theorem just proved. Here it is. 

Corollary. If vX is locally compact, then X is locally pseudocompact. 

At the end of this paper I want to describe for you a space which constitutes 
a counterexample to the converse of that corollary. As a matter of fact, the space I have 
in mind is locally compact, but its Hewitt realcompactification is not even locally 
pseudocompact. Before passing to that space, however, I'd like to mention another 
theorem whose proof, because it involves no ideas not presented above, I will omit. 
This theorem is not so elegant as it might at first appear to you to be. For, although 
it characterizes the local compactness of the space vX and is so far as I am aware the 
only such theorem known, it does this in terms of a property of vX, not of X. Anthony 
Hager, in his doctoral dissertation [5], gives a condition on X equivalent to the con
dition that vX be both locally compact and cr-compact. 

Theorem. In order that vX be locally compact, it is necessary and sufficient 
that for each point p in vX there exist pseudocompact subsets A and B of X for 
which (i) p e C\DX A and (ii) some function in C(X) assumes the value 0 throughout A 
and the value 1 throughout X \ B. 

The example with which I will conclude this lecture was concocted to answer 
in the negative the following question: "If X is locally compact, must vX also be 
locally compact?" When I described this space in a letter to Hugh Gordon, his letter 
of acknowledgement referred to the space as a "spiral staircase". Now you and I 
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probably think of a staircase as being a subset of Euclidean 3-space; but the space I 
am about to describe, since it contains copies of a certain ordinal space which is 
well-known not to be metrizable, is not. Of course Gordon intended his epithet as 
a conceptual aid not to be taken literally, and in this spirit I recommend it to you 
highly. You will notice, however, that though our staircase has infinitely many steps, 
it will be difficult to climb far upon it. For the steps are all of the same size, and there 
is one particular point which lies on every step. 

Let W denote the set of ordinal numbers less than the first uncountable ordinal 
number col9 and let W* denote the Stone-Cech compactification of W. Let Ybe the 
space obtained from the product space N x W* x W* by identifying, for each posi
tive integer k and each ordinal number y ^ col9 the two points 

(k, col9 y) and (k + \9y9 coL). 

Let p be the "center point" 

(1, col9 cot) = (2, col9 coJ = . . . = (k, col9 cox) = . . . 

The topology on Y is defined by the decree that a subset of Y, whether or not it 
contains the point p9 is open if and only if it meets each set of the form {k} x W* x 
x W* in a relatively open subset. This definition turns Y into a completely regular 
Hausdorff space which is cr-compact, hence Lindelof and hence realcompact. The 
point p has no compact neighborhood in Y, nor indeed even a pseudocompact one, 
since any neighborhood of p contains for some nonlimit ordinal number y the 
sequence {(k, y9 y)}k€N

 a s a n open-and-closed set of isolated points. 
I promised to describe for you a space X which is locally compact, and instead 

we seem to have a space Y which is not even locally pseudocompact. You have 
probably already guessed correctly at the definition of X. It is to be the space 
Y \ {p}9 which is surely locally compact. To show that Y = vX9 we need only check 
that each function in C(X) extends continuously to Y. Such a function / is continuous 
on each set of the form {k} x W* x W* \ {p}, and a familiar theorem from the 
topological theory of ordinal spaces assures us that for each positive integer k there 
exists yk < cot such that 

/ ( k , <r, T) = f(k9 yk9 yk) 

whenever yk S <? S cot and yk ^ T ^ cox and (a9 x) 4= (col9 cot). Since supfc yk < col9 

there is a deleted neighborhood of p on which/is constant, so that/certainly extends 
continuously to p. 

In an interesting construction which will appear in [7], Norman Noble exhibits 
a k-space X whose realcompactification vX is not a k-space. Unfortunately his 
space X is not locally compact, and unfortunately the space Y I constructed for you 
a moment ago is a k-space (as you can easily verify for yourself). Thus neither his 
example nor mine can be used to provide an answer to the following question, which 
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so far as I am aware is unsolved in set theories free of measurable cardinals. (A discrete 
space of measurable cardinality, if such a space exists, yields a negative answer to this 
question.) If X is locally compact, must vX be a k-space? 

Notes added November 10, 1966. 1. I learned yesterday from John Mack in 
Lexington, Kentucky, U.S.A., that he has known about the space X constructed above 
since early 1964, when an anonymous referee guided him to it. To Mack, the space is 
of interest because it is a "locally compact non weak cb space such that vX is weak 
cb." It is discussed from this point of view in his joint paper with D. G. Johnson, 
The Dedekind completion of C(X), to appear in the Pacific Journal of Mathematics. 

2. Another anonymous referee has provided me with a solution to the problem 
raised in the last sentence of this paper. There is, in fact, a locally compact space X 
of nonmeasurable cardinal for which vX is not a k-space. Details will appear in my 
forthcoming paper, On the Hewitt realcompactification of a product space, to appear 
in the Transactions of the American Mathematical Society. 

Note added in proof, April 14, 1967. Recent conversations reveal that the 
technique introduced above, or one very similar to it, is, in fact, at least two decades 
old. Using an argument suggested by Richard Arens, Edwin Hewitt uses a pasting 
argument much like ours, on spaces which are products of spaces indexed by ordinal 
numbers, to construct a regular space on which each continuous real-valued 
function is constant. His paper appears in Annals of Math. 47 (1946), 503 — 509. 
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