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TYPES OF ULTRAFILTERS ON COUNTABLE SETS1) 

Z. FROLIK 

Cleveland—Praha 

Two ultrafilters x and y on countable sets X and Yare said to be of the same type 
if there exists a bijective mapping / of X onto Ysuch tha t / [x ] = y (or equivalently, 
f*x = y where x and y are considered as points of the Cech-Stone compactifications 
of X and Y, and/* is the Stone-Cech extension of/). Let T be a set and T be a mapping 
of the class of all ultrafilters on countable sets onto T such that rx = ry iff x and y 
are of the same type. 

Let N be the discrete space of the counting numbers. If x e cl X — X where X is 
a discrete countable subset of /?N, then the intersections of the neighbourhoods of x 
with X form an ultrafilter on X which will be denoted by xx. The type TXX is called 
the type of x with respect to X; TXN is called the type of x, and the types with respect 
to subsets of jSN — N are called the relative types of x. 

By [2] the producing relation $ is defined to be the set of all <1, O e T x T 
such that TXN = t\ TXX = t for some x e £N - N and X <= pM - N. If <f, *'> e 0 
then we say that "f produces t'" or "t' is produced by t". 

Theorem. A. If <*l5 f2> e <P, (t2, f3> e <2> then <tl9 f3> e # . 

B. No type is produced by itself, i.e. <£, t} e $ for no t. 
C. Any type is produced by at most exp K0 types. 

A is simple, B and C are rather profound (B was proved in [3], C in [2]). It 
should be remarked that B is equivalent to the following theorem on fixed points: 
No homeomorphism of /?N into /?N — N has a fixed point. 

Let us state two applications of C given in [2]: a proof of nonhomogeneity 
of /?N — N without any use of the continuum hypothesis, and an example of 
a space X such that Xn is countably compact but Xn+1 is not (here n is an arbitrary 
counting number). A very simple proof of nonhomogeneity of /?N — N without the 
continuum hypothesis is based on B: if h is a homemomorphism of /?N — N into 
itself and hx = y, then the sets of the relative types of x and y coincide. Thence, 
according 10 B, if the type of x is a relative type of y then hx = y for no h. 

The properties of <T, $> and some related objects are developed in [4]. 

*) This is a part of an invited lecture which was cancelled because of a presumed overlap 
with Gillman's lecture. 
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