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A HEREDITARILY INFINITE DIMENSIONAL SPACE 

R. H. BING 

Madison 

1. Introduction 

In recent papers [1,2, 3] David Henderson describes examples of infinite 
dimensional compact metric spaces which contain no 1-dimensional closed subsets. 
In this paper we modify Henderson's approach slightly to give alternative descriptions 
of such examples. 

The plan for getting an example is to start with a Hilbert cube H. We regard H 
as the Cartesian product of It x I2 x ... whereIt = [— 1/21, 1/2']. The metric for H 
is Euclidean. 

Note that H has a countable basis Ul9 U2, ... where Ut is of the form Bn x 
x In+1 x In+2 x ... where i ^ n and Bn is the intersection of an open round rz-ball 
in En with It x I2 x ... x In where for the moment we regard Ix x I2 x ... x In 

as lying in Euclidean ri-space En. 
An example of an infinite dimensional compact metric space with no 1-di­

mensional closed subset is obtained as the intersection of a countable number of 
closed subsets Kl9 K2, ... of H where the K/s have two important properties. 

The first of these important properties is the following: 

Property 1. Any continuum in Ktfrom U{ to H — Ut contains a subset of Bd Ut 

of dimension greater than or equal to 2. 

This property insures that K = Kx n K2 n ... contains no closed 1-dimensional 
subset. 

The second important property of the K/s is chosen to insure that K is not 0-
dimensional or null. In fact, we choose the K/s so that K contains a continuum that 
joins the first pair of opposite faces of H. This pair is {—1/2} x I2 x I3 x ... and 
{1/2} x I2 x J3 x .... In choosing the property we are guided by a generalization 
of the following interesting property of a canonical cube C3. If X is a closed set that 
separates the front face from the back face of C3 and Yis a closed set that separates 
the left face from the right, then X n Y contains a continuum joining the top and 
bottom of C3. See Proposition A on page 40 of [4]. 

If X, Yare subsets of H9 we say that Yseparates X wrt It if X — Yis the union 
of two mutually separated sets one of which contains X r\(I1 x I2 x . . . x Ii_1 x 
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x {-1/21} x Ii+1 x ...) and the other of which contains X n (lt x I2 x ... x 
x Ii_1 x {1/21} x Ii+1 x . . .) . We say that Y weakly separates KwrtIf if X — Y 
is the union of two mutually separated sets (either or both of which may be null) 
one of which misses Ix x / 2 x - . I i - i x { —1/21} x I.+ i x ••• and the other of 
which misses I! x I2 x ... x /,-_. x {l/21} x Ii + 1 x .... 

Our remarks about C3 may be extended to H as follows. If K2, X3, ... are closed 
subsets of H such that X2 weakly separates II wrt I2, X3 weakly separates X2 wrt I3, 
K4 weakly separates X3 wrtI4, ..., then it can be shown that X2 n X3 n ... contains 
a continuum which joins the first pair of opposite faces of H. This result and related 
ones are given by Theorems 3, 4, 5 in Section 4. 

The second important property of the Ki's is the following: 

Property 2. K, is a closed subset of a subcontinuum Rt of H such that: 

a) R{ weakly separates H wrtI2i and 
b) Ki weakly separates Rt wrtI2 i + 1 . 

It follows from Theorem 5 that K = Kx n K2 n ... is not O-dimensional since it 
contains a continuum joining the first pair of opposite faces of II. 

Theorem 1. The set K = Kt n K2 n ... is an infinite dimensional compact 
metric space with no l-dimensional closed subset. 

2. Description of the R's and K^s 

First we consider the case where Bn is a round ball in lt x I2 x ... x In. Let R( 

be the union of H — Ut and the set of all points p of Ut whose 2/th coordinate is 
l/221 sin (1\Q(P, Bd U\)). We use Q to denote the distance function. Note that R( 

weakly separates H wrtI2i. 

- 0 ' — 

Figure 1. 
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Figure 1 gives a diagramatic view of Rt in case Bn is 1-dimensional and Figure 2 
shows it if Bn is of dimension 2. In Figure 2 we are reminded of a vibrating drum 
or ripples on a pond where the period becomes short near the boundary but the 
amplitude remains constant. 

Figure 2. 

r2M 

Figure 3. 
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By considering the variable half periods of y = sin l/x we find that Ri n Ut 

contains a countable number of mutually exclusive sets Fu F2, . . . such that there is 
a homeomorphism Kj of Bd Ut onto Fj such that if nj(xl, x2, ...) = (yu y2, . . .) , 
then yk = xk ifk>n and (yl9 y2, ..., y,.) is between (xu x2, ..., xn) and the center 
of Bn. Any infinite subsequence of the F/s will converge to Bd Ut and if C is a con­
tinuum in Rt from Ut to 1I — Ub then for j* sufficiently large, Fj n C will contain 
a continuum that joins the 2/th pair of opposite faces of IF 

Consider the set of all closed subsets of Bd Ut that separate Bd Ut wrtI2t + 1. 
If these closed sets are metrized with the Hausdorff metric, they become the points 
of a separable metric space. Let Wu W2i ... be a dense set of these separators. Let Kt 

be the set of all points p such that either /; e \JKJ WJ or p is a point of the closure of 
Rt — \JFj. Note that K, weakly separates R( in II wrt I2i+i. It is shown at the end 
of Section 3 that K; has Property 1. 

Figure 3 shows half of some of the ^(W^'s in case Bn is 1-dimensional. In case 
n = 2, Fj resembles a pipe with length the 2/ direction and thickness the 2/ + I 
direction, where KJ(WJ) is a set separating the inside lateral surface of the pipe from 
the outside lateral surface. 

In case Bn is not a subset of I! x I2 x ... x I„, we let t be a positive number so 
small that tBn a It x I2 x ... x /„. If R't (K;.) is the set like Rt (Kt) we get by 
using tBn, then Rt (Kt) is the set of all points (x1? x2, ...) of H such that (txly 

lx2, ..., txn, xn+u ...) is a point of R't (KJ). 

3. Preventing ^dimensionality 

How does one prove that a set is of dimension greater than 1? In Lemma 2 
of [2], Henderson used the criteria that a set is of dimension greater than 1 if there is 
an essential map of it onto a square. In this section we use a modification of Lemma 2 
proposed by Harry Row. 

Theorem 2. Suppose in a metric space X that AL, A2 are mutually exclusive 
closed sets; Bt, B2 are mutually exclusive sets; and Y is a compact set such that 
each subset of X that separates Ax from A2 in X intersects Y in a set containing 
a continuum from Bt to B2. Then dimension Y — 2. In fact, if W separates At 

from A2 in X then there is a point of W r\ Y at which Y is of dimension greater 
than 1. 

Proof. That dimension Y ^ 2 follows immediately from Proposition B on page 
34 of [4] but we include another proof. Let W' be a closed subset of W such that 
X — W' is the union of two mutually separated sets Vu V2 containing Ai9 A2 

respectively. Assume Yis of dimension less than or equal to 1 at each point of Yn W'. 
At each point p of Yn W', let Op be an open set such that p e Op, dimension 

(Yn Bd Op) = 0, and Op n (At u A2) = 0. Let Ou 02, ..., On be a finite number 
of OpS covering Yn W'. 
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n n 

Let W" = (W - U oi) u U Bd Ot. Note that W" separates Ax from A2 since 
i = 1 i = l n n 

X — IV" is the union of the mutually separated sets Vx — (J Ot and (V2 u \J Ot) — 
i! i = l i = l 

— (J Bd Of). Since dimension (W" n Y) ^ 0, (IV" n Y) does not contain a continuum 
£ = 1 

from PL to B2. This contradiction resulted from the assumption that Yis of dimension 
less than or equal to 1 at each point of Y n W'. 

Theorem 2 and Property 1. It follows from the above Theorem 2 that if Kt is as 
described in Section 2 and C is a continuum in Kt from Ut to H — Ui9 then dimension 
(C n Bd U) = 2. To see this, let Bd Ut of Section 2 be the X of Theorem 1, the 
intersection of Bd Ut with the 2/th pair of opposite faces of H be Bl9 B29 the inter­
section of Bd Ut with the (2i + l)st pair of opposite faces of H be Al9 Al9 and C n 
n Bd J7£ be Y To see that if Wis a subset of Bd Ut that separates Bd Ut wrtl2i + l9 

then IV n C contains a continuum joining the 2/th pair of opposite faces of H we 
proceed as follows. Let W(nx)9 W(n2)9... be a subsequence of Wl9 W29... converging 
to W. For k sufficiently large, there is a continuum C(nk) in C n n„k W(nk) joining 
the 2/th pair of opposite faces of H. Some subsequence of C(n^)9 C(n2)9... converges 
to a continuum in W. This continuum lies in IV n C and joins the 2/th pair of opposite 
faces in H. 

4. Essential maps 

A m a p / of a set X onto a cell B is said to be inessential if there is a map g : X -> 
-> Bd B such that / = g on / - 1 Bd B. If there is no such map g9 we say that / is 
essential. In the following theorem we use In to denote an n-cell and I1 to denote [0, 1]. 

Theorem 3. Suppose f is an essential map of a metric space X onto In+X = 
-= In x I1 and n is the projection map of In x J1 onto In. If Yis a subset of X that 
separates / _ 1 ( / n x {0}) from / _ 1 ( / w x {!}), then nfJY is an essential map of Y 
onto F. 

Proof. Suppose X — Y is the union of mutually separated sets U9 V where 
f~x(ln x {0}) <= U a n d / _ 1 ( / n x {1}) <= V. We suppose Yis closed since by using 
the fact that X is hereditarily normal, we find that if an arbitrary set in X separates 
two sets in X9 a closed set in the arbitrary set separates the same two sets in X. 

Assume nfJY is inessential. Then there is a map g' : Y-> Bd In such that g' = nf 
on Yn(7i/)~1Bdr. Let g : Yu/"1 Bd (/" x I1) -> Bd (ln x I1) be such that 
g = f on f~l Bd (/" x I1) and for each point x e Y, g(x) = (g'(x)91) where t is the 
second coordinate of f(x). Let g be an extension of g to all of X such that g(U) c 
c (In x {0}) u (Bd/rt) x J1 and g(V) a (ln x {1}) u (Bd/n) x I1. Note that g is 
an extension of the m a p / / / " 1 Bd (/" x I1). The assumption that nfJY is inessential 
led to the contradiction t ha t / i s inessential. 
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Theorem 3 can be extended as follows. 

Theorem 4. If in Theorem 3 we supposed merely that X — Y was the sum of 
two mutually separated sets one of which missed f~l(ln x {0}) and the other of 
which missedf~l(ln x {1}), the conclusion still holds that nfJYis an essential map 
of Y onto In. 

Proof. The proof is the same as the proof of Theorem 3 except that instead of 
being able to require that g = / on f~l Bd (ln x I1), we would merely suppose 
that g =f on / ^ ( ( B d r ) x J1), g(f~1(ln x {0})) c In x {0}, and g(f~l(ln x 
x {1})) c f x {1}. Since gjf'1 Bd (J" x I1) -> Bd(1n x I1) is nomotopic to / 
and g can be extended to take X onto Bd (ln x I1), the Homotopy Extension 
Theorem (see Theorem VI 5 of [4]) says tha t / / / " [ Bd (In x J1) can be so extended. 

Theorem 5. / / X2,X3, ... is a sequence of sets in H such that X2 weakly 
separates Hwrt12,X3 weakly separates X2 wrt13,X4 weakly separatesX3 wr t / 4 , . . . 
thenX2 n X3 n ... contains a continuum joining the first pair of opposite faces of H. 

Proof. Let nnJ be the projection of H onto It x In+1 x ... x In_1+j. It 
follows from Theorem 4 and induction on n that nnJX2 n X3 n ... n Xn is an 
essential map of X2 n X3 n ... n Xn onto It x In+1 x ... x In_1+j. 

Since nnA\X2 n X3 n ... n Xn takes X2 n X3 n ... n Xn essentially onto Il9 

there is a continuum CninX2nX3n...nXn joining the first pair of opposite 
faces of H. Some subsequence of C2, C3,... converges to a continuum in X2 n X3 n 
n ... and this continuum joins the first pair of opposite faces of H. 

5. Variations in the definition of K 

The proof of Theorem 3 is slightly easier than that of Theorem 4 so it would have 
been easier to prove that dimension (Kj n K2 n ...) ^ 2 if we had replaced 
"weakly separates" by "separates" in Property 2. We could do this by taking a new Rt 

whose points have coordinates the same as the points of the old Rt except that the 
2ith coordinate is divided by 2. To get a new Kt we would divide both the 2/th and 
the (2i 4- l)st coordinates of points of the old Kt by 2. While this variation simplifies 
the proof, it complicates the construction. 

Another variation of description of Kt permits us to avoid using the projection nj. 
Instead of letting Wl9 W2,... be a dense set of separators of Bd Ut wrtl2i+1 and 
projecting these separators onto the Ft

9s to obtain Kt we could have let W[, W2, ... 
be a dense set of separators of Rt wrtl2i+1 and used W[r\ Ft instead of nffi in 
defining Kt. Instead of proving that dimension (C n Bd C7f) = 2 we would have 
shown that dimension C = 2 but this would have been just as good. 
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6. Infinite dimensional continuous curves 

Of course, K = Kx n K2 n ... is not locally connected or it would contain an 
arc. However it is possible to change any compact metric space to a continuous curve 
(Peano continuum) by adding to it the union of a null sequence of arcs so that no 
two of them intersect each other except possibly at an end point of each. Hence such 
an addition would convert K into an infinite dimensional continuous curve with no 
2-dimensional subcontinuum. 

By picking a nondegenerate component K', adjoining a null sequence of mutually 
exclusive arcs to it to convert K' to a continuous curve C and then shrinking the 
arcs to points, there results an infinite dimensional continuous curve C with no 
2-dimensional subcontinuum. Actually C results from a decomposition of Kr 

whose nondegenerate elements are point pairs. Also C has the property that each 
open subset of it is infinite dimensional. 

7. Questions 

What conditions imposed on an infinite dimensional compact metric space 
implies that the space contains a 1-dimensional subcontinuum? Would the triviality 
of the 1st homology (Cech) imply this? Would the triviality of all the homology groups 
imply it? 

The triviality of the 0-th homotopy implies that a space is arcwise connected. 
Does some restriction on the global and local homotopy groups of an infinite dimen­
sional compact metric space imply that it contains a 2-dimensional subcontinuum? 
Need an infinite dimensional compact metric space contain a 2-dimensional closed 
subset even if it is an absolute retract? 
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