István Juhász Remarks on a theorem of B. Pospíšil

In: (ed.): General Topology and its Relations to Modern Analysis and Algebra, Proceedings of the second Prague topological symposium, 1966. Academia Publishing House of the Czechoslovak Academy of Sciences, Praha, 1967. pp. 205--206.

Persistent URL: http://dml.cz/dmlcz/700883

Terms of use:

© Institute of Mathematics AS CR, 1967

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

REMARKS ON A THEOREM OF B. POSPÍŠIL

I. JUHÁSZ

Budapest

Let N_m be the discrete topological space of power $m \ge \aleph_0$, let βN_m be its Čech-Stone compactification and let $X_m = \beta N_m \setminus N_m$. The theorem of B. Pospíšil mentioned in the title says that X_m contains $|X_m| = \exp \exp m$ points with the character exp m. Analysing the original proof of this theorem (see [1]) we can get the following result – of which Pospíšil's theorem is an easy consequence.

Theorem 1. Let $f: R \to R'$ be a closed continuous mapping of the space Ronto R', let $y \in R'$ and suppose that $f^{-1}(y)$ is compact. Let $\mathfrak{m}, \mathfrak{n} \geq \aleph_0$ be cardinal numbers such that $\mathfrak{m} \geq \mathfrak{n}$ if \mathfrak{m} is regular and $\mathfrak{m} > \mathfrak{n}$ otherwise. Suppose that there is a system \mathfrak{U} of power \mathfrak{m} of neighbourhoods of y such that no intersection of \mathfrak{n} distinct neighbourhoods from \mathfrak{U} and no finite union of such intersections is a neighbourhood of y. Then there is a point $x \in f^{-1}(y)$ such that

 $\chi(x, R) \geq \mathfrak{m}$.

(Here – as usual – the character of x in the space R is denoted by $\chi(x, R)$).

Theorem 2. Let R be a Hausdorff space and R' one of its Hausdorff extensions with cellularity number $\leq \mathfrak{m} \geq \aleph_0$ (i.e. R' does not contain a disjoint open set system of power > \mathfrak{m}). If $\mathfrak{q} \geq \mathfrak{m}$, then the set of points in R' of character $\leq \mathfrak{q}$ has a power $\leq \exp \mathfrak{q}$.

The proof can be based on a set theoretical lemma from [2]. An immediate corollary of this theorem is the following partial improvement of Pospišil's result.

Theorem 3. Let m be an infinite cardinal. Then

$$\exp\left[\chi(x,\,\beta N_{\mathfrak{m}})\right] = \exp\exp\mathfrak{m}$$

for almost every point $x \in X_{\mathfrak{m}}$ (or $x \in \beta N_{\mathfrak{m}}$). That means the power of the set of points $y \in X_{\mathfrak{m}}$ with

 $\exp\left[\chi(y,\beta N_{\mathfrak{m}})\right] < \exp \operatorname{exp} \mathfrak{m}$

is $< \exp \exp \mathfrak{m} = |X_{\mathfrak{m}}|.$

This result is in fact stronger than Pospíšil's theorem if we assume the generalized continuum hypothesis. However, there are also other consistent conditions on the exp function under which Theorem 3 is stronger than Pospíšil's. Assume, e.g., $\exp \aleph_0 = \exp \aleph_1 = \aleph_2$ and $\exp \aleph_2 = \aleph_3 = \exp \exp \aleph_0$. Then the cardinality of the set of points of X_{\aleph_0} of character $\leq \aleph_0$ is at most $\exp \aleph_1 = \aleph_2$, hence almost every point has character $\aleph_2 = \exp \aleph_0$.

Though by Theorem 3 almost every point of βN_m has a large character, i.e., in set theoretical sense there are many points of large character, topologically there are but few, namely

Theorem 4. For all $\mathfrak{m} \geq \aleph_0$ the set of points of $X_\mathfrak{m}$ of character $\leq \exp \aleph_0$ contains a dense open set, i.e., the points of a character $> \exp \aleph_0$ are nowhere dense.

For an arbitrary point of X_m we can prove the following estimation.

Theorem 5. Let $x \in X_{\mathfrak{m}}$ and let

 $\mathfrak{p}(x) = \min \{ |A| : A \subset N_{\mathfrak{m}} \text{ and } x \in \overline{A}^{\beta N_{\mathfrak{m}}} \}.$

Then

$$\mathfrak{p}(x) < \chi(x, \beta N_{\mathfrak{m}}) \leq \exp \mathfrak{p}(x).$$

Thus, assuming the generalized continuum hypothesis all the points of X_m have characters of the form $\exp q$, where $\aleph_0 \leq q \leq m$, and the exact cardinality of the set of points in X_m with the character $\exp q$ is $m^q \exp \exp q$.

References

- [1] B. Pospišil: On bicompact spaces. Publ. Fac. Sci. Univ. Masaryk 270 (1939).
- [2] A. Hajnal and I. Juhász: Discrete subspaces of topological spaces. Indag. Math. (1966) (in print).