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REMARKS ON A THEOREM OF B. POSPÍŠIL 

I. JUHÁSZ 

Budapest 

Let iVm be the discrete topological space of power m = K0, let /iNm be its 
Cech-Stone compactification and let Xm = (INm \ Nm. The theorem of B. Pospisil 
mentioned in the title says that Xm contains |Xm| = exp exp m points with the 
character exp m. Analysing the original proof of this theorem (see [1]) we can get the 
following result — of which Pospisil's theorem is an easy consequence. 

Theorem 1. Let f: R -> Rf be a closed continuous mapping of the space R 
onto Rf, let y e Rf and suppose that f_1(y) is compact. Let m, n = K0 be cardinal 
numbers such that m _; n if va is regular and m > n otherwise. Suppose that there 
is a system U of power m of neighbourhoods of y such that no intersection of n 
distinct neighbourhoods from U and no finite union of such intersections is a neigh
bourhood of y. Then there is a point x ef~x(y) such that 

x(x, R) = m . 

(Here — as usual — the character of x in the space JR is denoted by /(x , JR)). 

Theorem 2. Let R be a Hausdorff space and Rf one of its Hausdorff extensions 
with cellularity number = m — K0 (i.e. Rf does not contain a disjoint open set 
system of power >m). If q = m, then the set of points in Rf of character =q has 
a power :g exp q. 

The proof can be based on a set theoretical lemma from [2]. An immediate 
corollary of this theorem is the following partial improvement of Pospisil's result. 

Theorem 3. Let m be an infinite cardinal. Then 

exp [x(x, pNm)] = exp exp m 

for almost every point xeXm (or x e fiNm). That means the power of the set of 
points y eXm with 

exp [x(y, jS/Vm)] < exp exp m 

is < exp exp m = \Xm\. 
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This result is in fact stronger than Pospisil's theorem if we assume the generalized 
continuum hypothesis. However, there are also other consistent conditions on the 
exp function under which Theorem 3 is stronger than Pospisil's. Assume, e.g., 
exp K0 = exp Ki = K2 and exp K2 = K3 = exp exp K0. Then the cardinality of 
the set of points of X#0 of character ^ K0 is at most exp Kx = K2, hence almost 
every point has character K2 = exp K0. 

Though by Theorem 3 almost every point of (5Nm has a large character, i.e., in 
set theoretical sense there are many points of large character, topologically there 
are but few, namely 

Theorem 4. For all m = K0 the set of points of Xm of character <Z exp K0 

contains a dense open set, i.e., the points of a character > exp K0 are nowhere dense. 

For an arbitrary point of Xm we can prove the following estimation. 

Theorem 5. Let x e Xm and let 

p(x) = min {\A\ : A cz Nm and x e AfiN™} . 

Then 
p(x) < x{x, pNm) S exp p(x) . 

Thus, assuming the generalized continuum hypothesis all the points of Xm have 
characters of the form exp q, where K0 :g q ^ m, and the exact cardinality of the set 
of points in Xm with the character exp q is mq exp exp q. 
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