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ON MEASURABLE SETS IN TOPOLOGICAL SPACES 

B. RIECAN 

Bratislava 

In measure theory the following theorem is well-known: If X is a metric space 
and /i is a Caratheodory outer measure (i.e., ft(A u B) = fi(A) + JI(B) whenever 
dist (A, B) > 0), then every open set is /x-measurable. In this report we present several 
similar theorems in topological spaces. 

All outer measures will be defined on the system of all subsets of a space X. 
A set A cz X is called //-measurable (where ji is an outer measure) iff /*(£) = /*(£ n 
n A) + JLI(E — A) for any E a X. 

The first theorem is formulated for an abstract space. From it all the other 
theorems easily follow. 

Theorem 1. Let X be a non empty set, Ji.be a symmetric relation defined on the 
system of all subsets of X with the following property: If ERF, Ex cz E, Fx cz F, 
then E1RF1. Let jx be an outer measure such that fi(E u F) = jx(E) + fi(F) whenever 

ERF. Let C = 0 K, Vn+l cz Vn, CR(X - V„), (V„ - Vn+l)RVn+2 (« = 1, 2, . . .) . 
n = l 

Then the set C is \i-measurable. 

Theorem 2. Let X be a regular topological space. Let pi be an outer measure 
such that JJL(A u B) = fi(A) + /JL(B) whenever there are open disjoint sets U, V with 
A cz U, B cz V(A is the closure of A). Then every compact Gd set is fi-measurable. 

Theorem 2 can be obtained from Theorem 1 by introducing the following 
relation: £RF iff there are open disjoint sets U, Vsuch that E cz U, F cz V. 

Theorem 3. Let X be a locally compact Hausdorff topological space. Let \i be 
an outer measure such that \i(A u B) = fi(A) + fi(B) whenever A, B are bounded 
sets with disjoint closures. Then every compact Gd set is fi-measurable. 

In this case it is sufficient to define the relation R as follows: £RF iff E, F are 
bounded sets with disjoint closures. 

Theorem 4. Let X be a uniform space with the uniformity °U. Let \i be an outer 
measure for which \i(A u 5 ) = ^(^4) + fi(B) whenever there is a Vetfl such that 
AxBaXxX— V. Then every compact G5 set is fi-measurable. 
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To obtain Theorem 4 from Theorem 1 put FRF iff there is a Ke f such that 

AxBcXxX-V. 

Theorem 5, Let X be a normal topological space. Let \i be an outer measure 

for which fi(A u B) = fx(A) + fi(B) whenever A n B = 0. Then every closed Gd set 

is pi-measurable. 

H e r e F R F i f f F n F = 0. 

Notice that some results of W. W. Bledsoe, A. P. Morse, N. Bourbaki and Z. 

Riecanova published in papers [1], [2] and [3] follow from our Theorem 1. Theorem 

5 is known and can be generalized to (D-normal spaces ([1]). Theorem 2 is valid even 

when the assumption of regularity of X is replaced by the weaker assumption of 

/x-regularity of X. A topological space is /i-regular iff for any open set 17, any compact 

set C c U, any set E of finite /^-measure and any s > 0 there are an open set V and 

a closed set D such that D c C, D c V,V c U, fi(E n (C - D)) < e. 

A detailed elucidation of our results including proofs will appear in the journal 

Casopis pro pestovani matematiky. 
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