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GELFAND-NAIMARK THEOREMS 
FOR NON-COMMUTATIVE TOPOLOGICAL RINGS 

K. H. HOFMANN 

New Orleans 

Representation theorems for C*-algebras by continuous sections have been 
discussed by many authors [2, 4, 5, 7, 8, 10, 11, see also 3, 9]; other classes of rings 
like biregular rings have been described in terms of sections in a sheaf [1]. A theory 
that covers the sheaf concept and a similar concept allowing non-discrete stalks has 
not been discussed in the generality as we suggest it, although the work of Tomiyama 
[10] comes very close to our approach in the case of C*-algebras. 

1. Uniform fields. The fundamental concept is the concept of a uniform field. 
A special case is described in [10] for C*-algebras. 

1.1. Definition. Let E, B be topological spaces and n : E ~> B a surjective con
tinuous function. A section is a continuous function a : V-* E from an open subset V 
of B into E such that n o a = 1F; it is a global section if V = B. The set of all global 
sections is denoted with F(n). We say that a passes through x e E if n(x) e dom a 
and x = a(n(x)). The set {(x, y)e E x E : n(x) = n(y)} will be denoted with E X7 E. 
For any subsets S, T a E x E, we let as usual S o T = {(x, y)eE x E: there is a z 
such that (x, z)eS and (z, y) e T} and T ("1 } = {(x, y)eE x E: (y, x) e T}. Afield 
uniformity U for n is a filter on E X7 E such that each U e U contains the diago
nal of E x E and that {U © J7<"1> : U e U} is a basis for U. For each section a and 
each 17 e U we let U(a) = {xe E: n(x) e dom a and (a(n(x)), x) e U}. Finally, if the 
neighborhood filter of each point xe E has as a basis the set of sets U(a) with U eU 
and a section a passing through x, then we call the pair (n, U) a uniform field of 
uniform spaces. The subspaces n~x(b) of E are called stalks: the space B is the base 
space. 

Remark. If the diagonal of E x E is an element of U then n is just a sheaf of 
sets. 

There are quite a number of elementary properties which follow more or less 
from the definitions which we do not list here. The following, however, is relevant for 
the later discussion: 

1.2. If, for a uniform field (n, U) of uniform spaces the set F(n) of global sections 
is not empty then the set of sets {(a, T) G T(n) x T(n) : (c(b), %(b)) e U for all b e B}, 
U e U, is the basis of a uniform structure on T(n). 
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From now on F(;r) will always denote the uniform space which is so defined. The 
definitions easily specialize to the case of topological groups: 

1.3. Definition. Let (n, U), 71: £ -> £ be a uniform field of uniform spaces satisfy
ing the following additional conditions: 

(a) Each stalk n~x(b) is a topological group with identity element e(b). 
(b) The set of sets U n (n~x(b) x n~l(b)), U e U, is the left uniformity of n"\b). 
(c) The function (x, y) -> xy"1 : E V -E -> E is continuous. 

Then (n, U) is called a left uniform field of topological groups. If each stalk is in fact 
a topological ring then we speak of a uniform field of topological rings if (n, It) is a 
uniform field of topological groups relative to the additive groups and if the multi
plication (x, y) -> xy : E V E -> E is continuous. 

1.4. If (n, U) is a left uniform field of topological groups, then the function s of 
1.3. a is a global section and T(n) is a topological group with identity e under the 
obvious pointwise operations (<XT) (b) = a(ti) x(b), o~~ x(b) = a(b)~ \ and the uniformity 
of 1.2 is the left invariant uniformity relative to this topological group structure. 

If (n, U) is a uniform field of topological rings then F(7i) is a ring under pointwise 
operations but not in general a topological ring unless additional conditions are 
satisfied. 

The following theorem is the basis for all representation theorems in terms of 
continuous sections: 

1.5. Theorem. Let G be a topological group and B a set of normal subgroups. 
Let E = \J{GJb :beB} and define n : E -> B by n(x) = b iff xe Gjb. Then the 
following conclusions hold: 

(i) There are topologies on E and B and a field uniformity Ufor n such that 
(n, U) is a left uniform field of topological groups. 

(ii) The topology induced on each n~l(b) = Gjb is the quotient topology. 

(iii) For each g e G the function g : B -> E defined by g(b) = bg (= coset of b) 
is a global section. 

(iv) The function g -> § from G into r(n) is a morphism of topological groups 
with kernel f)B. (The canonical bisection GJC\B -> 6 is not necessarily an iso
morphism of topological groups.) 

(v) The function (x, g) -> x(g(n(x))) defines a left action of G on E which makes 
the pair (E, G) a transformation group with the stalks as orbits. The orbit space E[G 
is homeomorphic to B. 

(vi) If E', B' are topological spaces having the same underlying sets as E and B 
such that (n, U), n : E' -> Bf is a left uniform field of topological groups satisfying 
(ii) and (iii), then the identity maps E' -> E and B' -> B are continuous. 
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If G is a topological ring and B any set of ideals then (7c, U) is a field of topological 
rings where U is the field uniformity given for the additive groups by (i). The subring 6 
of r(n) is a topological ring. 

The morphism g -> g is called the Gelfand representation. 
One may note that additional structure on a topological ring usually is reflected 

in T(n). Thus, e.g. if G is a C*-algebra, then F(n) can be given the structure of a C*-
algebra in a natural fashion. It should be pointed out that through Theorem 1.5 for 
any topological group a topology is introduced on any set B of normal subgroups. 
We note this in 

1.6. Definition. Let B be a set of normal subgroups (resp. a set of ideals) in 
a topological group (resp. ring) then the topology introduced on B by 1.5 (i) is called 
the weak star topology. 

2. Ideal spaces. Let A be a ring and B a set of prime ideals. Then B can be given 
the hull-kernel topology. To be specific we let Bs be the structure space, i.e. the space 
of all primitive ideals in the hull kernel topology. The advantage of the hull kernel 
topology is that it is often compact (e.g. if A has an identity) or locally compact (e.g 
if A is a C*-algebra). Its disadvantage is twofold: 

Firstly, it is rarely Hausdorff, let alone completely regular which would be 
desirable in view of the application of Stone-Weierstrass type theorems. But secondly, 
by Theorem 1.5 (vi), in order that it be compatible with the natural field structure it 
would have to be at least as fine as the weak star topology which is frequently not 
the case as examples show even in the case of C*-algebras. These observations 
suggest modifications of the structure space. The following general lemma is a direct 
a consequence of the existence theorem of adjoint functors. 

2.1. Let X be a topological space. Then there exists an (essentially unique) 
continuous map co : X -+X' onto a completely regular space (resp. Hausdorff) space 
such that all continuous maps from X into a completely regular (resp. Hausdorff 
space) factor through cp. 

2.2. Let Bs be the structure space of a ring. Let (pt : Bs -» Bh i = 1, 2 be the 
functions of 2.1 with Bt completely regular and B2 Hausdorff. For x e Bt define the 
ideal mx of A by 0^7X(x)- The set Mcr (resp., Mh) of all mx, x e Bt (resp. x e B2) 
together with the topology that makes the function x -> mx a homeomorphism is 
called the completely regularized (resp. separated) structure space of A. 

Note that Mcr is a surjective continuous image of Mh and that compactness of Bs 

implies that Mcr = Mh is a compact Hausdorff space. 
There is an example of a C*-algebra such that (despite the local compactness 

of Bs) the space Mcr is not locally compact. TOMIYAMA considers ideal spaces which 
are obtained in a similar fashion and which allow a locally compact Hausdorff 
topology due to a special condition [10]. 
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2.3. Definition. Let X be any completely regular space. A one-point compactifica-
tion of X is a compact space X u {oo}, oo £ X, such that the inclusion X -> X u {00} 
is bicontinuous. 

One might recall that every collection of compact subsets of X defines a one 
point compactification by defining a basis for the neighborhood filter of 00 by taking 
the complements of finite unions from the collection. Note that X u {00} is Hausdorff 
iffX is locally compact and the neighborhood filter of 00 contains all complements of 
compact sets. 

2.4. Definition. Let (n, U), % : E -> B be a left uniform field of topological groups 
over a completely regular base space B. Let £ be the identity section. 

Let B u {00} be a one point compactification. Then we say that a global section a 
is zero at 00 if for every U eU there is a set K <z B such that (B \ K) u {00} is a 
neighborhood of 00 in B u {00} and that b $K implies (s(b), o(b)) e U. The set of 
global sections vanishing at 00 will be denoted with r0(n). 

2.5. Fo(ft) is a subgroup of r(n) and a subring if (n, U) is a uniform field of rings. 
For each topological ring A with the set B of its primitive ideals we have several 

fields arising naturally: 

2.6. Definition. Let A be a topological ring, B the set of all primitive ideals, Bs the 
set B with the hull kernel topology, Bw the set B with the weak star topology. Let M 
be the completely regularized structure space, and Mw the same set with the weak 
star topology. Let (n, U), % : E -+ Bw and (n, IV), %' : E' -> Mw the fields of Theorem 
1.5. If the identity function M -> Mw is continuous, then we let E" be the space E' 
with the coarsest topology such that the identity function E" -> E' and %' : E" -> M 
are continuous. Then (7c", IV), 71" : £" -> M with 71" = 71' is also a uniform field of 
additive groups (which is a uniform field of topological rings if (%', IV), % : E' -> Mw 

is one; this is the case in most applications). 

3. Locally convex algebras. In order to formulate a Gelfand-Naimark type 
theorem for a reasonably wide class of topological algebras we need the following 
definition. 

3.1. Definition. Let A be a topological ring. A subset S of A is called bounded if 
for each neighborhood Vof 0 we have S cz V + ... + V(for a suitably large sum). 
We say that A has bounded approximate partitions of unity relative to its structure 
space Bs if there is a bounded set S such that for every a eA and every neighbour
hood U of 0 and for every finite collection Cl9..., Cn of closed subsets of Bs with 
DiCi = 0 there are elements et e It n S, It = f) {I : I e Ct} such that a — (e± + ... + 
+ en) a e U. 

We then have the following result: 
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3.2. Theorem. Let A be a locally convex complete topological algebra over the 
reals or complexes such that multiplication and scalar multiplication are uniformly 
continuous on bounded sets, and such that A has a neighborhood basis ofO consisting 
of bounded neighborhoods (this amounts to normability). Suppose the following 
conditions are satisfied: 

(a) A has bounded approximate partitions of unity relative to its structure 
space Bs. 

(b) For arbitrarily small open neighborhoods U of 0 in A the set of all I e Bs 

with (a + I) n U = 0 is compact. 
(c) For each neighborhood U of 0 there is a neighborhood V of 0 such that 

Ci{V+I:IeBs}c:U. 

Let M be the completely regularized structure space of A (2.2). 
Then M -> Mw is continuous and (n", W), n" : E" -> M (2.6) is a uniform field 

of locally convex topological algebras. There is a one point compactification 
M u {00} of the completely regular space M (2.3) such that A = F0(n") under the 
Gelfand representation. If A has an identity, then M is also the separated structure 
space, which is compact and coincides with Mw. Then A = F(n') under the Gelfand 
representation. 

There is, in fact, an example of a C*-algebra for which Bs is locally compact but M 
is not locally compact. If A does not have an identity then Mw is never Hausdorff, 
so that M 4= Mw in that case. The proof involves Stone-Weierstrass type arguments 
and a number of other technical arguments. 

3.3. Theorem. Any complex C*-algebra satisfies conditions (a) — (c) of 3.2. 
The isomorphisms in 3.2 respect the C*-algebra structure. 

The proofs of (b) and (c) are standard whereas (a) is not quite routine; its proof is 
inspired by the proof of the existence of an approximate identity in a C*-algebra. 

3.4. Theorem. If A is a C*-algebra with identity and Z its center, then the 
function m -> m n Z is a homeomorphism of M onto the maximal ideal space of 
the center. Under the Gelfand representation Z goes onto C(M).l (where 1 is the 
section taking on the identity in every stalk). 

Thus 3.4 gives an algebraic characterization of the space M which was defined 
topologically in 2.2. Theorem 3.3 should be compared with Theorem 3.1 of TOMIYAMA 

[10]. It should be noted that the function m -> ||tf(m)||, where a is the Gelfand 
transform of a in the field n", is not in general continuous; the continuity of all of 
these functions implies the Hausdorffness of M. There is, of course, a faithful 
representation of At as a closed subring of continuous sections in the field n : E -» Bw, 
but if Bs is not Hausdorff, it will not contain all sections or even all sections vanishing 
at infinity. Yet the stalks in this field are primitive, whereas the structure of the stalks 
in the field n" is not generally known, although every stalk is again the ring of 
sections over some completely regular space vanishing at infinity. 
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4. Weakly biregular rings. The methods outlined before can be applied in 
particular to discrete rings. 

4.1. Definition. Let A be a ring and Bs the space of its maximal modular ideals in 
the hull-kernel topology. It is said to be weakly biregular if for an ordered pair 
(I i ,I2) of maximal modular ideals there is a central idempotent e such that eelt 

and e <£ I2, and if f)Bs = 0. 

Every biregular ring (i.e. a ring in which every principal ideal is generated by 
a central idempotent) is weakly biregular. The following theorem is a generalization 
of the representation theorem in [1] and is due to Dauns: 

4.2. Theorem (Dauns). Let A be a weakly biregular ring such that every 
proper ideal is contained in some maximal modular ideal. Then Bs is a totally 
disconnected locally compact Hausdorff space. There is a sheaf n : E -> Bsof rings 
whose stalks are local rings with identity and A = T0(K) under the Gelfand 
representation. 

If A is biregular, then the stalks are simple rings with identity, see [ l ] . 

There are the usual converses of the representation Theorems 3.3 and 4.2 (with 
some qualifications). 

The proofs together with a detailed discussion of a general theory of uniform 
fields will appear elsewhere in a joint paper with J. DAUNS. 
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