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ON SOME SPACES OF FUNCTIONS 
AND DISTRIBUTIONS 

J. MUSIELAK 

Poznan 

In [4] L. SCHWARTZ introduced spaces Q)LP of functions and 3)'LP of distributions. 
The purpose of this note is to present some properties of spaces Q)M and Q)'M replacing 
spaces <£p in Schwartz's definition by Orlicz spaces 3?M}) Let M(u) be an even, 
continuous, convex, nonnegative function assuming the value 0 only at u = 0, 
u~l M(u) -» 0 as u -> 0 and u~l M(u) ->oo asu ->oo. We define 

®M = 0 {<P G & '• \M(kpD
p (p(x)) dx <oo, where kp > 0 depends on cp} ; 

here $ is the space of all infinitely differentiable functions of n variables, the integral is 
taken over the whole ri-dimensional space and the product f\ runs over all systems 

p 

p = (pj, ..., p„) of nonnegative integers. Defining the topology in <3)M by a countable 
system of seminorms 

| |D>| |M = inf{e> 0 : \M(s~lDp <p(x)) dx = 1}, 

Q)M becomes a J50-space. We denote by 3)'N the dual of 3)M, where N(u) is the function 
complementary to M(u) in the sense of Young. 

The following elementary proper t ies hold: 
If cp e <2)M then cp(x) -• 0 as |x| ->oo; if cpk -> 0 in 9)M then <pk(x) are uniformly 

bounded and (pk(x) -> 0 as |x| ->oo uniformly in fe. Assuming M2(u) = 0(Mi(u)) as 
u -> 0, we have 

®MI <= ®M2 and ®'Nl a @'Ni ; 

here 3C <=: ^ means that :T is a part of ^ with a finer topology. Moreover, we have 
Se% cz Q)'N. If M(u) and N(u) satisfy the condition (A2): M(2u) = K M(W) with a 
/c > 0 for all w, then the set Q) of all infinitely differentiable functions of compact 
support is dense in @)M and in @'N, whence Q)'N is a normal space of distributions, the 
space Q)M is reflexive and 3)'N consists exactly of finite sums of (distributional) deriv
atives of functions belonging to <£N. 

In the above introduced spaces, the integral transform 

K cp(x) = fc(x, y) cp(y) dy 

l) For the proofs of results presented here, cf. [1], [2] [3]. 
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and its adjoint K* defined by K* T(cp) = T(Kcp)9 where T is a distribution, may be 
considered. Assume Ml9 M2, Nl9 N2 satisfy the condition (A2) for all u9 and x and y 
are points of the n-dimensional and m-dimensional space, respectively. Let k(x9 y) 
be an infinitely differentiable function of x for every y9 k(x9 y) measurable in the 
(n -F m)-dimensional space. Finally, let k(x9 y) satisfy the following a s sumpt ions 
(As): 

1° Dp k(x9 y) is a function of x equicontinuous in every bounded set of y9 

2° kp(x) = \\DP k(x9 . ) | M 2
 ,S bounded for every p separately, 

3° ||fcp||Nl is finite for every p. 

Then K and K* are linear compact operators from JS?̂ 2 to QNl and from Q)'Mx to 
JS?M2, respectively, and the ranges of K and K* are linear subspaces of the first category 
in Q)Nv resp. $£Mr If, moreover, \\DP k(.9 y)\\Nl is bounded in y for every p separately 
and the support of k(x9 y) is contained in a strip {(x9 y) : y e A}9 where A is of finite 
measure in the m-dimensional space, then 

* T(y) k(x, y) Tx áx 

for every Te «@Ml, the last integral being defined in Schwartz's sense [5]. 
Besides spaces Q)'N9 spaces ^^(E) of vector-valued distributions (cf. e. g. [5]) may 

be considered, where i f (E) = ^e(j^
r; E) is the space of linear continuous operations 

from^f' to E provided with the topology of uniform convergence on equicontinuous 
parts of«?f (here E and-^f are locally convex linear topological HausdorfT spaces and 
# is a space of distributions). Of course, ^Nl(^Ml) consists of linear operators 
adjoint to operators from SMl(QN^)\ examples of such operators yield the above 
considered transforms K and K*. It is easily seen that taking as E a Banach space and 
denoting by jSfM[K] the space of all vector-valued functions with values in E9 M-
integrable in Bochner's sense, i. e. 

* M - { / : / W » « • » * n,e»suraMe a„d J M ( , | | / M | | ) d , 

for a k > 0 dependent on f} 

where f = g means thatf(x) = g(x) almost everywhere) with the norm 

<oo 

| |/ | |M = i n f { e > 0 : 

we have 

MІгҢfWђdxš 1}, 

.S?*[£]ć^(£). 
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