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CONCERNING THE DIMENSION OF ANR-SETS 

K. BORSUK 

Warszawa 

I shall understand here by ANJR-sets only compact absolute neighbourhood 
retracts. These sets constitute a class of spaces which is much more general than the 
class of all finite poly topes. However, the ANR-scts have topological properties similar 
in many respects to topological properties of polytopes. 

In the present communication I intend to give a simple theorem exhibiting a 
further analogy between the dimensional properties of >!NjR-sets and of polytopes. 

It is a very elementary fact, that a family of n-dimensional disjoint sets lying in an 
n-dimensional polytope is at most countable. An analogous statement for arbitrary 
n-dimensional compacta is not true. For instance, the Cartesian product Qn x C of 
the n-dimensional ball Qn with the Cantor discontinuum C is an n-dimensional com-
pactum which contains a family of 2Ko n-dimensional disjoint balls of the form 
Qn x (x), with xeC. 

For ,4NjR-spaces an analogous phenomenon is impossible. In fact, we have the 
following 

Theorem. Let X ba an ANR-set and let {Ka} be a family of n-dimensional 
ANR-sets lying in X and indexed by a which runs over an uncountable set A. If for 
every two distinct indices a, a' e A the dimension of the common part of Ka and Ka> is 
less than n, then the dimension of X is greater than n. 

In order to prove this theorem, let us assume that X is a subset of the Hilbert 
space Hw. Since X is an ^INK-set 

(l) There exists a neighbourhood U of X in Hm and a retraction r :U -» X of' U 
to X. 

Since dim Ka is equal to n, there exists in Ka an infinite n-dimensional chain such 
that its boundary lies in a compactum Ba cz Ka, and there exists a positive number ea 

such that the boundary of this chain is not homologous to zero in the generalized 
ball 

Qa = E [>(x, B) < e J . 
xeKa 

By an infinite chain in Ka we understand here a sequence {Kai} of n-dimensi nal 
chains lying in Ka, with coefficients belonging to arbitrary Abelian groups, in general 
depending on i, and with maximal diameter of simplexes converging to zero when i 
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tends to infinity. By the boundary of this chain we understand the infinite cycle 

{dK.A-
Hence 

(2) {dKaJ} lies in Ba c Ka and {8KaJ} ~ 0 in Qa = E [Q(X, Ba) < e j . 
xeKa 

In general, the positive number ea depends on a. However, since a runs over the 
uncountable set A9 there exists an e > 0 such that ea > e for an uncountable set of 
indices a. Consequently, if we replace A by its suitably chosen subset, we can assume 
that 

(3) ea > e > 0 for every cue A . 

The compacta Ka may be considered as points of the space 2X consisting of all 
non-empty subcompacta of X. Since 2X is compact and since A is uncountable, we 
infer easily that there exists an index (1 in A and a sequence {a,„} of distinct indices 
such that 

(4) lim Kam = K and a... 4= /? for m = 1,2,... 

Since Kfi is an A.NR-set, we infer that 
(5) There exists a neighbourhood V of K in H10 and a retraction s of V to Kp. 

Now we see easily that there exists a positive integer n0 such that for the index 
y ~ am0 every segment x s(x) (in Hco) with x e Ky lies in U n Vand that the diameter 
of the set r(x s(x)) is < e: 

x s(x) c U n V and S[r(x~s(x)y] < s for every x e Ky. 

Setting 
ff(x) = r [ ( i _ t) x + t s(x)] for every 0 = t = 1, 

we see easily that the family of functions \ft} is a homotopical deformation of the 
set Ky in the space X to the set Kp. 

By (2) and (3), there exists in Ky an infinite ri-dimensional chain {Kyi} such that 
the infinite cycle {dKyti} lies in a compactum By cz Ky and it is not homologuous to 
zero in the ball 

Qy= E [e(x, B7) < e] . 
JCCKy 

Let us consider the compactum 

M = U (x~J(~x)) • 
;ceBy 

Since the diameter of the set r(x s(x)) is smaller than e and since r(x) = x e Bv we 
infer that r(M) cz Qr 

Evidently fr(x) e r(M) c Qy for every point x e Br We conclude that there 
exists in the space X an infinite (n + l)-dimensional chain {2J such that 

dli = KyJ - s(KyJ) - nt, 
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where {//J is an infinite n-dimensional chain lying in Qy. It follows that the se­
quence {Kyi — s(Ky ,) — L/J is an infinite n-dimensional cycle lying in the com-
pactum Kp u Ky n r(M) and that this cycle is homologuous to zero in X. Moreover, 
if we apply the hypothesis that dim (Kp n Ky) < n, we see easily that this cycle is 
not homologuous to zero in its carrier K^ u Ky u r(M). However the existence of a 
such infinite cycle implies that the dimension of the space X is greater than n. Thus the 
proof of the theorem is concluded. 

The following problems remain open: 

1. /s the theorem true if the notion of ANR-sets in understand in the more 
general sense, without the hypothesis of compactness? 

2. Does the theorem remain true if we replace the hypothesis that the uncount­
able family of sets {Ka} consists of ANR-sets, by the weaker hypothesis, that Ka are 
arbitrary n-dimensional compacta? 

Now I shall present two app l i ca t ions of this theorem: the first to the problem 
of existence of universal absolute retracts, and the second — to the theory of r-neigh-
bours. 

We understand by an universal n-dimensional AR-sct every n-dimensional AR-set 
which topologically contains every other n-dimensional AR-set. Since 1-dimensional 
AR-sets coincide with the dendrites, that is with locally connected continua which do 
not contain any simple closed curve, the problem of existence of an 1-dimensional 
AK-set was solved many years ago by T. WAZEWSKI ([2]), who constructed a dendrite 
containing topologically every other dendrite. However the question of existence of 
n-dimensional universal AP-sets, for n > 1, has remained open. By a remark due to 
K. SIEKLUCKI, our theorem would allow to solve this problem for n = 2 in the nega­
tive sense, in case we can construct an uncountable family of 2-dimensional ^4i?-sets 
with the property that none of them topologically contains any 2-dimensional closed 
subset of another. 

I shall give the idea of a cons t ruc t ion of such a family. Consider an arbitrary 
sequence {nk} of natural numbers greater than 1, and let Pt = A be a triangle in 
Euclidean 3-space F3. By Tx we understand the triangulation of Pt consisting of the 
triangle A and all its sides and vertices. Consider a system of nx triangles A1? ..., Ani 

lying in the interior of the triangle A and satisfying the following two c o n d i t i o n s : 

1. The barycenter bA of A is the common vertex of Al5 ..., ABl. 

2. A; n Aj = (bA) for i # j . 

Now let e1 be a positive number and let ZT^ be a segment of length el5 perpendicular 
to the triangle A. Consider the system of 3n{ triangles A1? ..., A3Ml which are spanned 
by the point aA and by all sides of the triangles Al5 ..., Ani. Let us denote by P2 the 
polytope 

K ( A , n 1 , e 1 ) - - A - U A i r . U A ; . . 
i = l 7 = 1 
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Next consider a triangulation T2 of this polytope and replace each of the triangles 
T2 by the polytope R(A', n2y e2) where e2 is a sufficiently small positive number. Thus we 
obtain a polytope P3. By iterating this procedure, we obtain a sequence {Pk} of 
2-dimensional polytopes in E3 and it is easy to prove that, by a suitable choice of 
the triangulations Tl7 T2, ... and of the numbers e,, £2, ..., the sequence {Pk} converges 
to a 2-dimensional ALR-set, which we denote by P({nk}). 

Now let us consider a sequence { wn} of all rational numbers and let us assign to 
every real number t the increasing sequence {nk(t)} consisting of all the integers n for 
which wn < t. Setting 

*(0 = p(K(t)}), 

one obtains a family consisting of 2**° two-dimensional AR-sets with the property that, 
for t 4= t\ none of the 2-dimensional closed subsets of <P(t) is topologically included in 
$(.?'). By the preceding theorem, we see at once that none of the 2-dimensional 
ANR-sets could topologically contain all the sets <P(t). Consequently a 2-dimensional 
universal v4R-set does not exist. 

The other application of our theorem concerns the theory of r-neighbours. 
(See [1].) We say that a space X is rsmaller than a space Y(in symbols: X < Y) 

r 

provided X is homeomorphic to a retract of Y, but Yis not homeomorphic to a retract 
of X. If X < Y, but no space Z satisfies the condition X < Z < Y, then we say that X 

r r r 

is an r-neighbour of Yon the left. It is easy to show that if X is an r-neighbour on the 
left of the Euclidean 3-cube Q3, then X must be a 2-dimensional AR-set, which topo­
logically contains all of the sets $(t). However, by our theorem, this is impossible. 
Consequently the cube Q3 has no r-neighbours on the left. 

Added in proof. The problem 2 is positively solved recently by K. SIEK-
LUCKI. 
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