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BASIC SEQUENCES AND REFLEXIVITY 
OF BANACH SPACES 

I. SINGER 

Bucuresti 

R. C JAMES has given the following characterization of reflexive Banach spaces 
([2], theorem 1): 

A Banach space E with a basis {xn} is reflexive if and only if 
(a) The basis {xn} is boundedly complete, i. e. for every sequence of scalars 

n oo 

{an} such that sup || ]T a.x.|| < + oo, the series £ a^x^ is convergent, and 
n i = 1 i = l 

(b) The basis {xn} is shrinking, i. e. lim ||f||n -= 0 for all functionals fe £*, 
« - * 00 

where ||/||n denotes the norm of the restriction off to the closed linear subspace of E 
spanned by xn + i,xn + 2, ... 

Recently V. PTAK [3] has completed the picture of the structure of reflexive Ba
nach spaces given by this theorem, by characterizing reflexivity in terms of bounded 
biorthogonal systems. 

Here we characterize reflexivity of a Banach space with a basis in terms of the 
behaviour of its basic sequences. 

A sequence {zn} <= E is called [1] a basic sequence, if {zn} is a basis of the sub-
space [z„] (i. e. of the closed linear subspace spanned by the sequence {zn}). We con
sider the following types of basic sequences: shrinking, boundedly complete, / + , P, P*. 

We shall say that a basic sequence {zn} is of type 
/+, if sup ||zn|| < + oo, and if there exists a constant rj > 0 such that we have, for 

n 

every finite sequence ti, ..., tn ^ 0, 

i £'.-««-Mi*.. 
i = i i = i 

n 

P, ifinf ||zn|| > 0 and sup || £ zn\\ < + o o , 
n n i = 1 

n 

P*, if sup ||zn|| < + oo and sup || £ Ay|| < + oo, where {/?„} c= [zn]* is the sequence of 
n n j = 1 

functionals biorthogonal to {z j . 

Let {*„} be a basis of £. Any sequence of the form 

yn= £ a,*., y „ * 0 (II = 1,2, . . .) , p0 = 0 , 
i = Pn - 1 + 1 
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is called [1] a block basis. We call block subspace of E any subspace spanned by 
a block basis. 

In this summary we shall give only the main result (proofs and other results will 
appear in Studia Mathematica): 

Theorem. For a Banach space E with a basis {xn} the following statements are 
equivalent: 

(1) E is reflexive. 
(2) Every basis of every block subspace is shrinking. 
(3) No basis of any block subspace is of type l + . 
(4) Every basis of every block subspace is boundedly complete. 
(5) No basis of any block subspace is of type P. 
(6) No basis of any block subspace is of type P*. 

Corollary. The above theorem remains valid if we replace " . . . basis of... block 
subspace" by "...basic sequence in £ " . 

References 

[1] C. Bessaga and A. Pelczyński: On bases and unconditional convergence of series in Banach 
spaces. Studia math., 17 (1958), 151-164. 

[2] R. C. James: Bases and reflexivity of Banach spaces. Аnn. of Math., 52 (1950), 518 — 527. 
[3] V. Pták: Biorthogonal systems and reflexivity of Banach spaces. Czechosl. Math. J., 9 (1959), 

p. 319-326. 


		webmaster@dml.cz
	2012-09-20T17:00:24+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




