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ON DIMENSIONAL PROPERTIES 
OF INFINITE-DIMENSIONAL SPACES 

Yu. SMIRNOV 

Moscow 

This report contains some results of myself and my pupils B. LEVSHENKO and 
E. SKLYARENKO, concerning infinite-dimensional spaces. 

W. HUREWICZ was the first to obtain results in this area for separable metric 
spaces. 

H. Theorem 1. If a space R has small transfinite dimension ind R then ind R < 
< co1. 

H. Theorem 2. The Hilbert cube J00 has no transfinite dimension ind. 
J. NAGATA calls a space R countable-dimensional when R is a countable union 

of zero-dimensional sets IVf, i. e. R = u IV., dim IV£ = 0. 

H. Theorem 3. Let R be a space with a complete metric; then R has small trans
finite dimension ind R if and only if R is countable-dimensional. 

The addition theorem for the small dimension ind was given by Toulmin using 
new operations with transfinite numbers. He gives a simple example of a space for 
which the addition theorem in usual sense is not true. 

B. Levshenko improved Toulmin's results as follows: 
L. Theorem 1. There exist metric compacta R, A, B such that R = A u B, 

ind A = ind B = cO0, ind R = co0 -f- 1. 
L. Theorem 2. Let R be a metric space and R = At u ... u An, where Ax are 

closed; then ind R ^ max ind A{ + oo0. 
Let us consider the big transfinite dimension Ind in Cech's sense. 

Theorem 1. If a space R has a big transfinite dimension then R has a small 
transfinite dimension and ind R ^ Ind jR. 

Theorem 2. If a metric space R has big transfinite dimension Ind R then 
Ind R < co1, and R is countable-dimensional. 

I have constructed, for every transfinite number a < col9 metric compacta I* for 
which Ind Ia = a. Levshenko has proved that these compacta Ia may have an arbitra
rily high dimension ind. 

A space R is called strongly-metrizable when it has an open basis which is a 
countable union of star-finite coverings. 

Theorem 3. Let a metrizable space R be a countable union of strongly-metriz
able subsets R^ ifR has small dimension ind then R is countable-dimensional. 
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For arbitrary metrizable space this proposition is an unsolved problem. 
The proposition inverse to theorem 3 is true for all complete metrizable spaces 

(completeness is meant in tech's sense). The following theorem is stronger: 

Theorem 4. Every complete metrizable space R which is an image of a count
able-dimensional metric space X by a closed and countable-to-one mapping has 
small transfinite dimension ind R. 

For the proof one of Nagata's theorems and the Sklyarenko's method are used. 

Corollary. Let R be a countable union of strongly-metrizable subsets and let R 
have a complete metric. Then the following conditions are equivalent: 

a) R has small dimension ind R, 
b) R is countable-dimensional, 
c) R is an image of a zero-dimensional metric space by a closed and finite-to-

one mapping, 
d) R is an image of a countable-dimensional metric space by a closed and count

able-to-one mapping. 
J. Nagata has proved that conditions b) and c) are equivalent generally. 

Call a space R weakly-countable-dimensional when R is a countable union of 
finite-dimensional closed subsets. 

I have constructed a compact metric space which is countable-dimensional but 
not weakly-countable-dimensional. 

Theorem 5. There exists a universal space for separable metric weakly-
countable-dimensional spaces: it is the set of all the points of the Hilbert cube which 
have only a finite number of non-zero coordinates. 

Recently J. Nagata has constructed a universal space for all metrizable weakly-
countable-dimensional spaces with given weight. J. Nagata has proved that the set of 
all points of the Hilbert cube which have only a finite number of rational coordinates 
is a universal space for countable-dimensional separable spaces. He also gives some 
other interesting characterizations of countable-dimensionality. 

In his proof of the theorem that the Hilbert cube has no transfinite dimension, 
W. Hurewicz proved that there exists in this cube a countable number of pairs of 
closed disjoint sets Ah Bt with the following property: if the closed sets Ct separate 
the space between A{ and Bt then the intersection f)Q is non-void. 

The following is a problem of Alexandroff: Let us consider the following 
property (A) of a space R: for every countable number of pairs of closed disjoint sets 
Ai9 Bt there exist closed sets C( separating the space R between At and Bt with an 
empty intersection: f)Ct = 0. 

Alexandroff's problem. Let R be a compact metric space; is the property A 
equivalent to the property of countable-dimensionality? For non-compact spaces 
these properties are not equivalent. 

Spaces with property A, called also weakly-infinite-dimensional, have been in
vestigated by Levshenko and Sklyarenko. 
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L. Theorem 3. The property A is equivalent to the following property B: 

(B) For every sequence of functions f{ and for every sequence of positive num

bers et there exist functions g{ such that \ft — gt\ < st and f lg f 1 ^) = $• 

B. Levshenko has generalized to weakly-infinite-dimensional space the addition 

theorem, the product-theorem, Hurewicz's theorem and others. 

S. Theorem 1. Every strongly-infinite-dimensional compact space contains a 

Cantor manifold in the following sense: 

The space R is an infinite-dimensional Cantor manifold if it is not cut by any 

weakly-infinite-dimensional compact subspace. 

S. Theorem 2. Let H be the set of all points of the Hilbert cube which have only 

a finite number of non-zero coordinates; every compact extension of the space H 

is strongly-infinite-dimensional. 

Unsolved p r o b l e m s . Let R be a metric space, ind R = 0. Has R a big trans-

finite dimension; is it countable-dimensional; is it weakly-infinite-dimensional? 
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