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DESCRIPTIONS OF ČECH COHOMOLOGY1) 

J. L. KELLEY 

Berkeley 

E. H. SPANIER [5] proved that, for compact spaces, a form of the Alexander-
Kolmogoroff homology theory suggested by A. D. WALLACE was isomorphic to the 
Cech theory. W. HUREWICZ, J. DUGUNDJI and C. H. DOWKER [4] established this 
result for paracompact spaces, and Dowker [3] later proved isomorphism for arbitrary 
topological spaces. P. ALEXANDROFF has an unpublished proof of the same theorem. 
The purpose of this note, largely methodological, is to outline in some detail a proof of 
isomorphism for paracompact spaces. It is remarkable that the proof is completely 
elementary and non-combinatorial in character. The corresponding development for 
homology with coefficients in a sheaf is sketched without proof in the last section. 

tech Cohomology. We review the definition of the Cech cohomology groups of 
a space X with coefficient group G in order to establish the notation. Suppose U = 
= {U(i)}i€l is an (indexed) open cover of X. For each (q + l)-tuple 5 = (s0, s1? • •., sq) 
of members of the index set I, we let \U(S)\ be the intersection n{^(s;) : * = 0, 1, ..., 
q}, and we define the nerve of the cover 17 = {U(i)}i€l to be the complex with q-dimen-
sional simplices Kq(U) = {s : \U(s)\ non-void}. The g-dimensional cochain group 
Cq(U) is {f : f is a function on Kq(U) to G}, and the usual coboundary operator on 
Cq(U) to Cq + 1(U) then defines the cohomology groups Hq(U) of the cover. 

If V = {V(j)}j€j is also an open cover of X then we say that Vis a refinement of U 
iff V(j) <= U(n/) for some suitably chosen function n on J to J. We call n a refining 
function; n induces a refining map on Kq(V) to Kq(U), which in turn induces a chain 
map on Cq(U) to Cq(V), and this chain map induces a refining homomorphism of 
Hq(U) into Hq(V). This homomorphism is independent of the particular refining 
function n which is chosen. The Cech cohomology group Hq(X) is defined to be the 
inductive limit (direct limit), under the refining homomorphisms, of the groups 
Hq(U) for all open covers U of X. 

Small Simplex Cohomology (Vietoris Type). There is a special sort of cover which 
is of particular interest to us. Suppose that N is an open subset of the product X x X 
which contains the diagonal A = {(x, x) : x e X}. For each member x of X we define 
N[x] to be {y : (x, y) e N} and we denote by N* the cover {N[x] : x e X}. Thus the 
space X itself is the index set for the cover N*. It is known that, in case X is paracom-
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pact, every open cover has a refinement which is of the form N*. In other words, the 
class of covers of the form N* is cofinal in the class of all open covers of X. The class 
of open neighborhoods of A is directed by cz, and we notice that if M and N are open 
neighborhoods of the diagonal and M cz N then the cover M* is a refinement of the 
cover N*. Moreover, if M cz N then there is a natural choice for the refining function 
which carries the index set X of M* into the index set X of N*, namely the identity. 
The set Kq(M*) of g-simplices of the cover M* is in fact a subset of Kq(N*), and the 
induced refining chain map of Cq(N*) into Cq(M*) is restriction; that is the image of 
fe Cq(N*) is / 1 Kq(M*). It follows from these facts that the Cech group Hq(X) is 
isomorphic to the inductive limit under the homomorphism induced by restriction of 
Hq(N*) for neighborhoods N of the diagonal in X x X. 

The preceding description of Cech cohomology has a natural geometric inter­
pretation. If we agree that a simplex (x0, xl9 ..., xq) with vertices in X is N-small if 
n{IV[xf] : i = 0, 1, ..., q] is non-void, then Kq(N*) is just the set of N-small g-sim-
plices, so that the cohomology theory may be called a "small simplex" theory. 

Alexander-Kolmogoroff Cohomology. We next need the fact "cohomology com­
mutes with inductive limit". More precisely: let Cq(X) be the inductive limit, under 
the restriction maps, of Cq(N*) for N a neighborhood of the diagonal in X x X. The 
coboundary operator on the cochain groups Cq(N*) induces a coboundary operator 
on Cq(X), and thus defines a cohomology group which we may denote *Hq(X). It is 
not hard to see that *Hq(X) is isomorphic to the Cech group Hq(X), since each is 
isomorphic to a group which can be described informally as {/ : / G Cq(N*) for some 
N, and for some M the restriction of/ to Kq(M) is a cocycle} modulo the equivalence 
relation {(/, g) : for some neighborhood P of the diagonal, / 1 Kq(P) — g | Kq(P) is 
a coboundary}. 

We are now very close to the Alexander-Kolmogoroff cohomology theory. The 
set Kq(N*) is the subset of the set X(q + 1) consisting of all (q + l)-tuples of points of X 
which are N-small. Thus Kq(N*) is a neighborhood of the diagonal Aiq + 1) = {(x0? 

xl9 ..., xq) : xt = x0 for all i}, and we shall refer to Kq(N*) as the N-neighborhood of 
Aiq + 1). The inductive limit Cq(X) of the groups Cq(N*) is then, by reason of the defi­
nition of the inductive limit, the set {(/, N) : / o n the N-neighborhood of A(q+1) to G}, 
modulo the equivalence relation: (/, N) is equivalent to (g, M) iff for some P,f = g on 
the P-neighborhood of A(q + 1). Because the space X is paracompact, the family of 
N-neighborhoods of Aiq+1) is a base for the family of all neighborhoods of Aiq+1)

9 and 
consequently Cq(X) is isomorphic to the family Fq of all functions/, each defined on 
some neighborhood of A(q+1) to G, modulo the subset of all functions/which vanish 
on some neighborhood of Aiq+1). (The isomorphism carries each equivalence class 
belonging to Cq(X) into the equivalence class containing it.) Finally, each equivalence 
class of Fq clearly contains members with domain equal to Xiq + 1). Whence: The Cech 
cohomology group Hq(X) is isomorphic to the cohomology group of the chain complex 
with q-dimensional cochain group equal to the group of all functions on X(q+1) to G, 
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modulo the subgroup consisting of functions zero on some neighborhood of the 
diagonal A(q + 1). This is the Alexander-Kolmogoroff cohomology theory. 

Cohomology with Coefficients in a Sheaf. Essentially the same reasoning as that 
given above yields a description of Alexander-Kolmogoroff type for the Cech coho­
mology group of a paracompact space X with coefficients in a sheaf f of Abelian 
groups over X. Let I be the set of all sections of #9 where sections are added point-
wise, the domain of the sum of two sections being the intersection of the domains. 
Let Cq be the set of all functions/ on X(q+l) to I with the property that for each 
member x of X there is a neighborhood U of x such that if s e U(q + l) then U is a subset 
of domain of/(s). Let Rq be the equivalence relation: Rq = {(/, g) : for x e X there is 
a neighborhood 17 of x such that f(s) \ U = g(s) | U for s e U(q + 1)}. The quotient 
Cq/Rq inherits an addition from I9 and with the natural coboundary operator, the 
g-th cohomology group of the chain complex with g-th cochain group CqjRq is iso­
morphic to the Cech group Hq(X9 /). 

There are several variations of the above description which pretty evidently give 
the same cohomology groups. R. Deheuvels [2] has a related description of Hq(X, f) 
in terms of objects which are "locally" functions on X(q + 1). 

Finally, the group CqjRq has a natural representation as a family of functions 
on X. We may describe this representation in terms of the construction above as 
follows. For each xe X define the equivalence relation JR* to be {(/, g): for some neigh­
borhood U of x9 if s e U(q + 1) then/(s) | U = g(s) \ U}. Clearly Rq = f){Rx

q :xeX}y 

and the natural map F such that F(f/Rq) (x) = f/R^ is therefore an isomorphism. The 
family of all functions F(fjRq) might well be called the group siq of Alexander co-
chains on X. It evidently has the property: if a and b belong to s/q and a(x) = b(x) 
then a | U = b | U for some neighborhood U of x. It is true, but not obvious, that 
a function b which locally belongs to srfq, in the sense that every point of X has a neigh­
borhood in which b agrees with some member of stfq, necessarily belongs to s4q. In 
brief, s/q is a complete carapace in the sense of H. CARTAN [1]. 
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