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SEMI-TOPOLOGY OF TRANSFORMATЮN GROUPS 

A. SOLIAN 

Bucureşti 

In a previous paper [1] (see also [4], example 7), I have shown that, given any 
set M and a transformation group 2( of M, then between the partially-ordered set 
(lattice, in fact) @(M) of the equivalence relations of M and the partially-ordered set of 
the subgroups of 21 there can be established a dual (inverse) Galois connexion (see [2]) 
35(~) and ~(S5) with ~ e g ( M ) , 35 <= 21, such that 35 -> 35(~(35)) is the closure-
mapping (see [3], [4]); in other words, if 35 is a subgroup of 21, if ~(S5) is the equi
valence of M corresponding to (associated with) 35, and if 35(~(S5)) is the subgroup of 
21 corresponding to (associated with) ~(35), then: 

1. 35 cz 35(~(S5)); 
2. 35x <= 352 ==>35(~(351)) <= S5(~(352)); 
3. 35(~(S5(~(35)))) = 35(~(35)). 
In the present paper it will be shown that there exists a topology (in a weaker 

sense) of 21, which I shall call a semi-topology, such that: 
a) The operations of multiplication (superposition) and inversion of transforma

tions are continuous in this semi-topology (theorem 1). 

b) The closure of a subgroup 35 <= 21, in the sense of the above inverse Galois 
connexion coincides with the closure of 35 with respect to the semi-topology of 21 
(theorem 2). 

c) If cp is a mapping of 21 onto a transformation group 21' of a set M', where (p 
satisfies a certain natural condition, then cp is a continuous mapping with respect to the 
semi-topologies of 21 and 2T (theorem 3). 

The present theory is not a particular case of Everett's theory [4] concerning the 
topology introduced in a group whose lattice of subgroups is related to another given 
lattice by a given Galois connexion. 

1° Let M be a non-void set, 21 a transformation ^roup of M; let 35 be a subgroup 
of 21; then the binary relation ~(35) = ~ of M, defined by 

a ~ b, a, b e M <=> 3 t , T e 35 , T(O) = b 

is an equivalence relation of M [2], which I refer to as the equivalence associated with 
35. Let ~ be an equivalence relation of M; then the subset 35(~) = 35 <= 21, defined by 

35 = {T I T e 2(, T(X) ~ x, for any x e M} 
22 Symposium 
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is a subgroup of 21 [2], which I refer to as the subgroup associated with ~. We have 
the following result [l]:1) 

The mappings ~ - • 25(~) and 25 —>~ (25) establish a dual (inverse) Galois 
connexion between (£(M), ordered by " = " where ~t — ~ 2 , ~ 1 ? ~ 2 G (J(M) <=> 
o (a ~ t b => a ~2 b), and the set of all subgroups of 21, ordered by inclusion; here 
closure is given by 23 -> 25(~(25)). 

2° By a semi-topological space is meant a non-void set S of abstract elements 
(points) such that, for any T e S, there is given a non-void family of subsets of S (the 
basis of neighbourhoods of T) which satisfies the conditions: 

a) T belongs to all sets of its basis of neighbourhoods; 

b) for Tl9 T2 G S, x1 =j= T2, there exists a set belonging to the basis of neigh
bourhoods of Tl9 which does not contain T2. 

In the special case where S satisfies the additional condition that, for any T G S 
and any pair of sets Ul9 U2 in the basis of neighbourhoods of T, there exists a U3 in the 
same basis, for which U3 cz Ux n U2, the space S is topological space in the usual 
sense [5]. 

In a semi-topological space S, the followingterminology will be used: 

1. open subset of S: any union of sets belonging to the various bases of neigh
bourhoods of points of S, or the void subset 0; 

2. closed subset of S: any subset F cz S, whose complement S \ F is open; 

3. neighbourhood of a point T G S: any open subset containing T; 

4. closure M of a subset M c S : the set of all T G S such that [/ n M =# 0 for any 
neighbourhood U of T. 

In a semi-topological space S, we have: 
a) any union of open subsets is open; 
P) any intersection of closed subsets is closed; 
y) M cz M, for any M c S ; 
5) a subset M is closed if and only if M = M; 
e) M is closed i. e. M = M, for any M c S ; 
£) if M t cz M2 cz S then M1 cz M2; 
r,) M = f) F, for any M cz S; 

P closed 
FD M 

9) if M = {T} (i. e. a single-point set), then M is closed; 
__ ^ 

0 U M J D U Mf> for any Mt, . . . , M„ cz S. 
i = l i = l 

Let S, T be two semi-topological spaces. Consider the cardinal product of the sets 
S, T as point set; as basis of neighbourhoods of a point (tr, T), CT G S, T G T, take the 
family of all pairs (U, V) where U and V belong to the basis of neighbourhoods of o 

1) See also [4] and [2] (where it is proved that the corresponding mappings are monotone). 
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in S and of T in T, respectively. Thus we obtain a semi-topological space S x T, which 
shall be called the cartesian product of the given spaces S, T. 

Let S, S' be two semi-topological spaces; a uniform mapping / : 5 -* S' is by 
definition a continuous mapping of S into S' if for any x e S, and any neighbourhood 
*U' off(x) in S', one can find a neighbourhood 17 of T in S with/(U) c U'. 

A semi-topological group is by definition a non-void set © of abstract elements 
such that following conditions are fulfilled: 

I. © is a group with respect to a certain law of composition, denoted by "." or by 
juxtaposition. 

II. © is a semi-topological space. 
III. The mappings 

p : © x © -> © and i : © ~> © 

defined by p(cr, T) = cr. T, i(c) = a"1 for a, T e © are continuous. 
3° Let M be a non-void set and 21 a transformation group of M. 
As law of composition in 2( take the superposition of transformations. Let 

T e 21; as basis of neighbourhoods of T in 21 take the family {U*}, xeM, where 

Wx = {a | a e % a(x) = x(x)} . 

Then we have the following results: 

Theorem 1. With respect to the defined operation and basis of neighbourhoods 
of a point, 21 is a semi-topological group. 

Theorem 2. If 35 is a subgroup of 21, then 

2$ = 35(~(35)) 

(where by 35 we mean the closure in the sense of the semi-topology in 21), i. e. the 
closure of a subgroup in the Galois connexion coincides with its closure in the semi-
topology of 21. 

Theorem 3. Let M, M' be non-void sets, 21, 21' transformation groups of M, M\ 
respectively; letfresp. cp be mappings of M onto M', resp. o/2l onto 2T, satisfying 
the condition 

f(r(x)) = ((p(x))(f(x)), for any xeM, % e 21 ; 

then the mapping cp : 21 -> 21' is a group homomorphism and a continuous mapping 
of 21 onto 21' (in the semi-topology just defined). 

We mention also the following p r o p e r t i e s : 
/ / 21 acs regularly on M (i. e. T^XQ) = t2(x0) for some x0e M implies xx = T 2 

whenever T1? T2 e 21) then the semUtopology of 21 is discrete (i. e. any x e 21 has a 
single-point neighbourhood {T}). 

A subgroup 35 c X(M) (where X(M) is the group of all transformations of M) 
is dense in X(M) (i. e. 35 = X(M), where the closure 35 is taken with respect to the 
semi-topology of X(M)) if and only if it acts transitively on M. 

22* 
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