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ON HOMOLOGY THEORY OF NON-CLOSED SETS

G. CHOGOSHVILI
Thilisi

1. Direct systems of compact groups. In homology theory of non-closed sets the
approximation of sets by their compact subsets or by their neighbourhoods is of
decisive importance. Such approximations lead, in particular, to direct systems of
compact groups. The definition of the limit of such systems given below would seem to
have proved of some use in homology theory of non-compact spaces [2b, ¢; 3; 6c,
d, f].

Let {A4,, m,5} be a direct system of compact groups 4, with homomorphisms

Tap » Ay = Ap .

Let B, be the character-group of 4, and a,, : B » B, a homomorph{sm, satisfying
the permanence relation

(aq, 0g4bg) = (nopa,, bg), a,eA,, bgeBy.

Then {B,, 0} is an inverse system of discrete groups, and {4,, n,,;} and {B,, o,,} are
dually paired to the group x of real numbers mod 1. Let B be the limit-group of
{B,, 04,} With discrete topology, and A’ the usual algebraic limit-group of {4,, m,}.
Then the groups A" and B are paired to « under a multiplication defined as follows:

(a, b) = (a,, b,), where a,eaeA’, b,ebeB.

Let A, be the annihilator of B in A’. We use the induced pairing of the factor-group
A’[|A, and the group B to introduce a topology in A’/A4, as follows: for any finite
subset F of B and any nucleus V of k a nucleus U of A'/A4, is defined as a set of ele-
ments a of A'/A, satisfying the condition (a, F) e V. We call the group A’/A4, in this
topology the general limit-group of {A,, n,}, and the compact completion 4 of
A’|A,, which exists and is unique, the limit-group of {A,, m,,}:

A = lim {4,, 7,4} .

The group A’/A, may be topologically imbedded in the character-group of B as an
everywhere dense subgroup of it and, therefore, 4 and B are dual: 4 | B.

Now we can introduce a compact topology in the direct sum Y A, of compact
groups A,. To do this, it is sufficient to consider ) A, as the limit in the above sense
of the direct system of all groups A4, with inclusion homomorphisms, where A, is the
sum of a finite subsystem of the system {4,}.
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Conversely, we can first define the compact sum ) A, of the compact groups A4,,
and then the limit of the system {A,, n,5}. To do this, we consider the topology of the
usual sum Y A, which satisfies the following conditions: a) the inclusion homo-
morphism

iyt A, — ZA(,
is continuous for every «; b) every homomorphism fof ) A, in any compact
group C is continuous, if the homomorphisms fi, are continuous; ¢) in this
topology Y A4, has a compact completion. Such a topology of Y A4, exists and
is unique. The compact completion of Y A, will be called the direct sum of compact
groups A, and denoted by ) A,. Now, the factor group Y A4,/A,, where A, is the
closure of the subgroup generated by the elements a, — m,a,, is the limit

lim {A,, 14} -

2. Projective and spectral groups of complexes and spaces. Let {K, <} be
a directed system of all finite closed subcomplexes K, of a complex K, ordered by the
inclusion
a < f< K, =K -

The groups of r-chains of K, over a discrete or compact group of coefficients X, with
the homomorphisms i, induced by the inclusion maps

i » Ko = Ky
form a directed system of groups

(1) {CUK s X), g} -

On the basis of (1), we construct homology groups of K of two kinds: projective and
spectral. Projective homology groups are obtained if we first take the limit of the
system (1) and then apply the homological functor, or, in notation,

H, l_m_} {C(K,, X), Taps) >

the limit being understood in the sense of § 1. Here, when X is compact, the boundary
operator is first defined for the general limit-group and then extended by continuity
to the limit-group. Spectral homology groups are obtained if, on the contrary, we
first apply the homological functor and then take the limit; in notation,

l_l_l:ll {Hr(Kaw X)s iaﬂ*} .

Using the inverse system of cochain groups of K, over a discrete or compact
group of coefficients Y

2 {C(Ke Y), iy}
we obtain, similarly, the projective and spectral cohomology groups of K.

If X and Y are dual, then the projective [spectral] homology group of K over X
and the projective [spectral] cohomology group of K over Y are dual not only for
a discrete X, but also for a compact X.
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From the theorem on commutativity of limit operator and homology functor,")
now a proposition of homological algebra, it follows that projective and spectral
homology groups are isomorphic for a discrete group of coefficients X, while pro-
jective and spectral cohomology groups are isomorphic for a compact group of
coefficients Y. Examples show that these isomorphisms are not valid when X is
compact and Y discrete.

Making use of the spectral and projective groups of complexes we construct the
corresponding (i. e. spectral and projective) homology and cohomology groups of
spaces of various types, viz., singular, continuous, Cech, Vietoris, etc. In this
way we obtain, on the one hand, the usual singular, Vietoris, etc. groups, every one
of these groups being of either the spectral or the projective kind. On the other hand,
we obtain new groups which are opposite in kind to the usual groups just mentioned.
Moreover, the above definitions, especially that of the limit of direct system of com-
pact groups, makes it possible to construct homology and cohomology groups of
spaces not only over a discrete, but over a compact group of coefficients as well. As
is known, these latter have not all been previously defined (see, e. g., [8], pp. 166,
184, 185, 188, 223, 233 and [10], p. 393).

Taking the singular complex of a space and its projective and spectral groups, we
obtain, apart from the usual singular groups of the space — which are groups of the
projective kind — also the spectral singular groups, as well as the projective singular
homology groups with compact coefficients.

The continuous homology groups are discrete groups of the spectral kind, but
the projective continuous groups may also be constructed, as well as the compact
spectral homology groups.

Spectral and projective groups of nerves of arbitrary coverings form direct and
inverse systems of compact or discrete groups, whose limit groups (in the sense of § 1)
are Cech groups of a space; in particular, we obtain spectral and projective homo-
logy groups with compact coefficients.

Groups of vietorisian complexes of coverings?) with homomorphisms, induced by
inclusion maps, form inverse and direct systems, whose limit groups are spectral and
projective Vietoris groups of a space over discrete or compact coefficients.

The relations between the spectral and projective groups, stated above for
complexes, extend to the groups of spaces in any homology theory — singular, Vieto-
ris, etc. The relations between various theories, established previously for cases when
projective and spectral groups coincide (for Cech and Vietoris theories in [7b], for
singular and continuous theories in [9], for singular and Cech theories in [13], for
Cech and Alexander-Kolmogoroff theories in [6a, €] and [12]), are valid for other

1) Proved by P. S. ALEXANDROFF [2a] for sequences and generalised by the present author
[6a] for arbitrary systems; cf. [4, 12].

2) By the vietorisian of a covering we mean a complex, whose vertices are points of the
space, a subset of vertices forming a simplex, if and only if it is contained in an element of the co-
vering.
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cases likewise, provided the groups in question are of the same kind — projective or
spectral.

Of the various applications which these groups have already received in topology
and variational calculus [1 ;2b, c; 3; 6b—g; 14; 15], we shall consider here the duality
laws, and not only in view of their classical character, but in view also of the distin-
guished role, EpuarD CECH’s investigations play in this field.

3. Duality theorems for spectral groups. Let S” be an n-sphere, A an arbitrary
set of S", F, a compact subset of 4 and G, the complement of F,. Let, further, K be
a triangulation of G,, K, a finite subcomplex of K, and L, the triangulated complement
in S" of K,. The Alexander-Pontrjagin theorem asserts the duality
(3) Hr(La’ X) | Hn-r—l(Kw Y) ]
where H(M, Z) denotes the s-dimensional homology group of M over a group of
coefficients Z, and X and Y are dual, X | Y. In its original form it was necessary to
suppose in this theorem X to be a discrete group. But interpreting H,(L,, X) as a
spectral group, we can extend this theorem to the case when X is compact. On car-
rying out this extension we are faced, for the first time, with the necessity of applying
the homological approximations of a set by its compact subsets and, simultaneously,
the approximations of its complement by the complements of the compact subsets
just mentioned. The approximation of L, by its finite closed subcomplexes L,, gives
precisely the spectral group H,(L,, X) which is the limit of the system

© {H(Law> X), icq} -
where i, are the homomorphisms induced by the inclusions i, : Ly, = L, T < 0.

The homology groups H,-,-(Kg, Y) of the complements

K,., = S"\ L,

with the homomorphisms Jj,.4, induced by the inclusions j,, : K,y = K,,, form an
inverse system of groups
(5) {Hy—r - 1(Kair Y), Jiye} -

Since, by Alexander-Pontrjagin duality theorem in its original form, i. e. when Y
is discrete, the groups

H(L,, X) and H,_,_((K,,Y)

are dual, systems (4) and (5) are dually paired. Hence the limit-groups of (4) and (5),
if the limits are taken in the sense of § 1, are dual. But the limit-group of (5) is iso-
morphic to the limit-group of the inverse system
©) (Hoeys (N, 1), )
where N, are nerves (or vietorisian complexes) of external open coverings U;: of K,
(i. e. Uy is a system of open sets of S”, whose union contains K,) and , are the cor-

responding homomorphisms of the homology groups. But the external coverings can
be substituted in (6) by the internal coverings of K, (i. e. by the coverings of K, by its
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open subsets), in virtue of the following lemma of Cech (for proofs of different forms
of this lemma under various conditions cf. [5; 11; 14; 15; 6b]):

Cech’s lemma. For any external covering U and any internal covering u of A
there exist isomorphic (i. e. with isomorphic nerves) external and internal coverings
V and, respectively, v of A, which are refinements of U and u, respectively, and sa-
tisfy the condition v = Vn A.

Applying this lemma, in the case when A is a polyhedron, to system (6) we
conclude at once that the limit-group of (6) is isomorphic to the homology group
H,_,_1(K,, Y) of K,. Thus, the Alexander-Pontrjagin duality (3) holds also when X
is a compact group.

Let us consider now the cohomology groups H'(L, Y) and H" " !(K,, X);
understanding H'(L,, Y) as the spectral group of L,, we see that these cohomology
groups are character groups of the corresponding homology groups under discussion,
and we obtain the diagram:

(7) Hr(La* X) \I/ Hn—r~1(Ka’ Y)

Hr(Lw Y) /I\ H"-'_I(Ka, X) .

A diagram of this kind has the following sense. It is a quadruple of graded
groups which are connected by group multiplications and homomorphisms, denoted
by [ and — respectively, and which are represented as the vertices of a square. The
components of each pair of these graded groups are in a certain I — 1-corresponden-
ce, which will be called the correspondence of the diagram. We shall consider not
only the usual correspondence, when the difference of dimensions of the correspond-
ing components is constant (degree of correspondence), but also a correspondence,
such that the sum of dimensions of corresponding components is constant; this con-
stant we call the g-degree.

The corresponding components of any pair of neighbouring groups are paired
to x. We shall consider here the case, when one of the neighbouring groups is discrete,
the other compact, and the multiplication is distributive, continuous and orthogonal.
The corresponding components of any pair of opposite (non-neighbouring) groups are
isomorphic. The multiplications and isomorphisms are compatible in the sense that:
(a) the composition of any two correspondences of the diagram is a correspondence of
the diagram; (b) x and y being corresponding elements of an arbitrary pair of isomor-
phic groups, and ¢ an element of either of the two other groups of the diagram,
(1, x) = (t, y). Diagram (7) has all these properties; its correspondences are of degree 0
and of o-degree n — 1.

By a directed system of diagrams {2,} we meanaset of diagrams 2, indexed by
a directed system {a} and satisfying the following conditions:
(a) for each o, § the quadruples of 2, and &, are bijective;

(b) for each o < f8 the groups corresponding to each other by the bijection just
mentioned are connected by homomorphisms in such a manner, that they form an
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inverse or direct system of groups; in the sequel these systems will be called systems
generated by {Z,};

(c) neighbouring systems of groups generated by {Z,} have opposite directions
and are paired to k;

(d) the homomorphisms of opposite systems of groups, generated by {Z,}, com-
mute with the isomorphisms of the diagrams 2, and Z;.

The limit diagram 2 of the system {2,}

af
2 =lim{2,},

is a quadruple, consisting of the limit groups of the systems generated by {2,}. These
limit groups are in the same categories as the groups of corresponding systems, the
definition of limit being as in § 1. The correspondanoes, multiplications, and iso-
morphisms of & are defined from those of 9,. For instance, if p = {p,} and q =
= {q,} are elements of limit-groups, then the multiplication (p, q) is defined as
(P 4.), the latter being independent of the choice of a. Now, the compatibility and
other properties of diagrams mentioned above can be proved to be valid for . Thus,
lim {2,} is a diagram. Degrees of correspondences of & coincide with those of 2,.
Diagram (7) is a diagram 2, in the sense just described. If « < f, i. €. K, = K,

the groups of 9, and %, are connected by the homomorphisms ixgs» igg japxr Jpes
induced by the inclusions

iy Ky — Kp
and

Jpa i Lg— L,
It can be verified that the set of all £, with homomorphisms i, etc., is a directed
system of diagrams {2,}. This system homologically approximates to the set G, = K
by its finite closed subcomplexes and to the set F, by its neighbourhoods.

The limit diagram 2, = {2,} consists of the spectral homology and cohomology
groups of G,, H,_,_ (G, Y) and H"""'(G,, X) respectively, and of the external
groups H,(F,, X) and H'(F,, Y) of F,. But applying the lemma of Cech, in the case
when A is a compact set F,, we conclude as above, that the latter groups may be
considered as usual, i. e. internal, Cech (or Vietoris) groups of F,. Thus we obtain
the diagram 2,

(8)

representing the correlations between the spectral groups of a compact—open pair
of complementary sets (F,,, G,).

Now let us consider such diagrams for each a, i. e. for each compact subset F, of
A, and let us connect them for each a < b, 1. e. for each F, = F,, by homomorphisms
induced by the inclusions

Hr(Fa’ X) \\/ Hn—r—l(Ga’ Y)
H'(Fa, Y) ;/l\ H"_r—l(Ga, X) ’

igp:F,— F, and j,:G,—> G,.



G. CHOGOSHYVILI 129

The set of all diagrams 2, and homomorphisms just mentioned form a directed system
of diagrams, giving the internal homological approximation of A by its compact sub-
sets F, and, simultaneously, the external approximation of B by complements G, of
F,. The limit diagram
2 = lim {2,}

consists of the homology and cohomology groups of 4 with compact carriers,
H,(A, X) and H'(A, Y) respectively, and of the external groups H,_,_(B, Y) and
H"""~(B, X) of B. But the lemma of Cech for arbitrary A guarantees that the latter
groups can be understood not only as limit-groups of the system consisting of groups
of neighbourhoods or of groups based on external coverings, but as usual Cech (or
Vietoris) groups of B. Here it must be taken into account that these groups must be
based not on finite coverings of B, as originally defined for the Cech groups[5], but on
all open coverings of B [2b; 6¢, d; 7a; 11]. These groups may be considered also as
Vietoris groups [ 7b] and, when A is a neighbourhood retract (in particular, when A is
an infinite polyhedron [6b]) as singular groups (see [13], cf. [6b]). Thus we obtain
the diagram &
©) ALY e 8.1

H'(A, Y) H"" "~ (B, X)
which gives the various forms of the Alexander-Pontrjagin duality theorem for an
arbitrary pair of sets (4, B). Certain of these forms and their particular cases (theorems
for external groups, for the discrete group of coefficients X, for the compact group of
coefficients X, etc.) have been obtained by P. S. ALEXANDROFF, N. A. BERIKASHVILI,
A. N. KOLMOGOROFF, K. A. Sitnikov and G. S. CHOGOSHVILI [2b, c; 3; 6b, c, d, f; 14].
The diagram 2, especially the compatibility of 2, and the way it was obtained above,
show the interrelations of these forms with each other, and prove that all of them
can be obtained by one and the same method, the chief tools being: the simultaneous
approximations to the sets by compact subsets and their complements, the theory of
group systems, and Cech’s lemma.

The duality of the first line of 2 — the earliest to have been obtained — gives the
Alexander-Pontrjagin theorem in its classical form. Moreover, it is the form from
which it is easiest to obtain the duality theorems for non-closed sets obtained previ-
ously, namely Eilenberg’s theorems relating to cases:(a)when r =0 and n isarbitrary,
and (b) when n = 2 and A4 is a homeomorphic image of a linear set (cf. [2b; 6b]).

The proof of the isomorphism of external and internal groups, given by P. S.
Alexandroff [2], differs from that sketched above. Alexandroff’s proof ma-
kes use of the canonical triangulations and transformations, which proved to be
very useful in the generalisation of duality theorems for projective groups.

4. Duality theorems for projective groups. The relations which, in this case, cons-
titute the starting point are represented by the following diagram 2,:

(10) H(F,, X) \', =G Y)
H’(F ) H" r(G,,, X)
9 Symposium
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Here H,(F,, X) and H'(F,, Y) are r-dimensional Steenrod’s homology and, respecti-
vely, cohomology groups of regular cycles and cocycles of F,, while H,_,(G,, Y) and
H"”’(Ga, X) are projective homology and cohomology groups of G, = K. The iso-
morphisms and horizontal dualities of (10) are forms of Steenrod’s duality theorem
[16]. From these forms, Steenrod’s original form can be obtained by applying Poinca-
ré’s duality theorem to the groups of K. The groups which we obtain by this dualisa-
tion form, with the groups of left and right verticals of Z,, two auxiliary diagrams. The
vertical dualities of &, are ordinary dualities of the homology and cohomology
groups. The duality of the right vertical was considered in § 2. The duality of the left
vertical is obtained similarly: in each complex participating in the definition of
Steenrod’s groups we only need interchange chains and cochains, 1. e. consider the
inverse system of chains and the direct system of cochains of finite open subcomp-
lexes in order to form the corresponding projective groups of the complex: when Y is
compact, the limit is taken in the sense of § 1.

The dualities and isomorphisms mentioned above satisfy the conditions of § 3
and, therefore, 2, is a diagram. Its correspondences are of degree 0 and of o-degree n.

Consider now the set of all diagrams 2, ordered by

a<b<F,cF,,

and the set of all homomorphisms of the groups of &, and 2,, a < b, induced by the
inclusions
igp:F,— F, and j,,:G, > G,.

These diagrams and homomorphisms form a directed system of diagrams {92,}. To
prove this, it is most convinient to use the auxiliary diagrams mentioned above.
Supplementary groups of the auxiliary diagrams are connected by homomorphisms
induced by canonical transformations (see end of § 3).

The limit diagram of the system {Z,} is

H(4,X) ' H, (B Y)

H'(4,Y) ¥* H" (B, X)

(1

Here H,(A, X) and H'(A, Y) are Steenrod’s homology and cohomology groups of A
with compact carriers. The groups H,_ (B, Y) and H"""(B, X) are the homology and,
respectively, the cohomology groups of B, based on neighbourhoods of B. But, as
above, it can easily be shown that these groups coincide with the groups based on
external coverings and, consequently, in virtue of Cech’s lemma, with projective Cech
groups of B. (It is to be noted that there does not exist an invariant definition of the
limit groups of systems consisting of supplementary groups of the auxiliary diagrams).
Thus, diagram (11) gives the duality theorems for projective groups of arbitrary pairs
of sets (4, B). The isomorphism of the groups H,(4, X) and H"""(B, X) is the general-
isation of Steenrod’s duality theorem which coincides with the theorem proved by
K. A. Sitnikov, Steenrod’s groups being isomorphic to the groups considered by K.
A. Sitnikov (see [14], cf. [3; 6g]).
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If X is compact, we obtain, from the coincidence of the spectral and projective
groups, the coincidence of diagrams (9) and (11) and, therefore, of Steenrod’s and
Vietoris’ groups; in this case the two coinciding theorems constitute the theorem of
Alexander-Pontrjagin in its original form.
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