
Toposym 1

John R. Isbell
Mazur's theorem

In: (ed.): General Topology and its Relations to Modern Analysis and Algebra, Proceedings of the
symposium held in Prague in September 1961. Academia Publishing House of the Czechoslovak
Academy of Sciences, Prague, 1962. pp. [221]--225.

Persistent URL: http://dml.cz/dmlcz/700972

Terms of use:
© Institute of Mathematics AS CR, 1962

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/700972
http://project.dml.cz


MAZUR'S THEOREM 

J. R. ISBELL 

Seattle 

Introduction. A linear topological space A is said to satisfy Mazur's theorem if 
every sequentially continuous linear functional on A is continuous. The original 
theorem of S. MAZUR,1) completed by V.PTAK,2) concerns the space C(X) of all conti
nuous real-valued functions on a completely regular space X, in the topology of 
pointwise convergence. C(X) satisfies Mazur's theorem if and only if X is functionally 
closed. Moreover, in any case the sequentially continuous linear functionals on C(X) 
are precisely the finite linear combinations of evaluations at points of the Hewitt 
completion of X (the completion with respect to C(X)). 

X can be removed from this description; if C(X)* is the space of all continuous 
linear functionals on C(X), in the weak * topology, then the space of all sequentially 
continuous functionals is the Hewitt completion u[C(X)*]. This follows from a 
general theorem of H. H. CORSON:3) if A is any linear space, in the weak topology 
induced by a dual space A*, and A* carries the weak* topology, then vA* is the space 
of all linear functionals <p on A which are continuous on countable subsets. The case 
A = C(X) is special in that every sequentially continuous functional is countably 
continuous. 

The question remains for general A, particularly in the weak topology induced by 
a dual space A*, when does A satisfy Mazur's theorem? One hopes for an answer in 
terms of A*. Of course, since (A*)* = A, there is such an answer in principle. It seems 
unlikely that a purely topological property of A* (as in Corson's theorem) will suffice. 

The theorem of Mazur and Ptak has been generalized to vector lattices of funct
ions [4] and to spaces of differentiable functions (E. S. Thomas4)); it will be here 
extended to many rings of functions. In each case, for a space (lattice or ring) of 
functions A on a a-compact5) space X, A satisfies Mazur's theorem. However, if we 
drop the side conditions, there is a countable-dimensional space A of continuous 
functions on a compactum X (a Cantor set) which does not satisfy Mazur's theorem. 

*) Unpublished, 1946. Stated in [1], p. 74. 
2) Unpublished, about 1956. 
3) See Theorem 1 below. 

) Unpublished thesis, University of Washington, 1961. 
5) In this paper compact means bicompact HausdorfT. A cr-compact space is a regular space 

which is a countable union of compact sets. 
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Corson's theorem. Let A and A* be dual real or complex linear spaces as in the 
Introduction. H. H. Corson has published [3] a proof of the following theorem for the 
special case that A is a Banach space in the weak topology. The statement in [3] is also 
a little overspecialized. The theorem in its present form is again due to Corson, and the 
changes in the proof are quite minor. 

Theorem 1. A is functionally closed if and only if every countably continuous 
linear functional on A* is continuous. Moreover, in any case the countably conti
nuous linear functionals on A*, in the topology induced by A*, form the Hewitt 
completion of A. 

The proof depends mainly on the following theorem of Bockstein [2]. Let 
P = J ]5 a be an arbitrary topological product of separable metrizable spaces; let U 
and V be disjoint open subsets of P. Then for some countable set I of indices a, the 
projection of P upon \\ Sa maps U and Finto disjoint open sets. 

ael 

Bockstein's theorem yields the 

Corollary. Let D be a dense subset of a product Y[$a °f separable metrizable 
spaces; let g be a continuous real-valued function on D. Then there is a countable 
set I of indices a such that if n denotes the projection from D into Y\ Sa, g is constant 

ael 

on each inverse set 7i-1(P). 
The proof is rather straightforward, using a countable basis for the real line; it 

is done in [3]. 
Proof of Theorem 1. Let p be any point of the Hewitt completion vA. Each 

function fin A* has a unique continuous extension/ over vA; and putting cp(f) = 
= f(p), it is easy to see that we have a countably continuous linear functional cp 
(which is continuous only if p e A). 

Conversely, let cp be a countably continuous linear functional on A*. For any 
countable subset K of A*, the smallest closed linear subspace 5 containing K is sepa
rable, and it is not hard to see that cp | S is continuous. By the Hahn-Banach theorem, 
then, cp coincides on K with at least one continuous linear functional, which is repre
sented by some a m A. Let F(K) be the set of all such a. As K varies, the sets F(K) 
form a filter base for a filter §. It will suffice to show that § is a Cauchy filter in the 
uniformity induced by all continuous real-valued functions on A. 

Choose a Hamel basis B for A*. The space of all linear functionals on A* is 
a product of lines P = J ] Ra, containing A as a dense subspace. By the corollary to 

aeB 

Bockstein's theorem, every continuous real-valued function g on A is determined by 
a countable set of coordinates K c B. In the set F(K), all points have the same a-th 
coordinates for a e K; thus g[F(K)] is a single point, and § contains small sets with 
respect to g. This completes the proof. 

Let us note how Corson's theorem and Ptak's theorem imply that the space of all 
sequentially continuous functionals on C(X) is O[C(X)*]. From Corson's theorem, 
this is the space of all countably continuous functionals. From Ptak's theorem, every 
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sequentially continuous functional cp is a finite combination of evaluations at points 
of vX. Since those evaluations are countably continuous, so is cp. 

Examples. The main counterexample shows that when A is an arbitrary space of 
continuous functions on a compact space X9 in the topology of pointwise convergence, 
A need not satisfy Mazur's theorem — even if X is metric, and A countable-dimen
sional, so that the whole dual space A*' generated by X is metric. Actually the fact 
that A can be taken countable-dimensional is obvious, since X compact => A* o-
compact => every countably continuous linear functional on A is continuous (by 
Corson's theorem). Thus once we have a discontinuous, sequentially continuous 
functional cp on some such A9 perhaps not countable-dimensional, cp must be discon
tinuous on some countable subset and thus on some countable-dimensional subspace. 

Then I shall describe an example in which A is not countable-dimensional, but is 
one of the familiar Banach spaces in an unusual topology. Specifically let A be the 
sequence space ^ of all real sequences {an} with Y}an\ < °°- Let l^ denote the Banach 
dual space of all bounded sequences {xn}9 coupled to A by (a9 x) = £a„x„. In l^ let X 
denote the set of all sequences of O's and l's; let A* denote the linear space generated 
by X. Topologized by A9 X is a Cantor set and A* is a cr-compact non-metrizable 
space. Clearly A* is a proper subspace of l^. If A is topologized by A*9 the functional 
in l^ — A* are not continuous; hence, by Corson's theorem, they are not countably 
continuous. 

However, every functional in lw is sequentially continuous on A. To prove this, 
let x e l^; let (an) be a sequence in A such that (an

9 x) does not converge to 0. It will 
suffice to exhibit a functional s e X such that (a", s) does not converge to 0. We may 
suppose for convenience that (an

9 x) = 1 for all n; and clearly we may suppose that 
for each m, am -» 0. Also, for convenience, suppose that ||x|| = sup |x„| = 1. Now 
since (al

9 x) = 1, there is a finite set SL of indices such that | £ am\ > | . There is 
meSi 

a larger finite set Tt such that ]T \am\ < \. Put nt = 1. Recursively, having finite sets 
mnone Ti 

Sl9 ..., Sk9 Tl9 ..., Tk9 and indices nl9 ..., nk9 such that St n T{_ t = 0, 

| 5 > - ' | > ! , and X |<C|+ X K ' | < | , for i=l , . . . , fc, 
meSi meT(_i mnoneTi 

there is nk+1 so great that for all n this great, £ |am| < | . Then Sk+1 disjoint from Tk 
meTk 

and Tk+1 containing Sk+1 u Tk can be found to complete the recursion. Finally that s 
such that :sm = 1 for m in uSk , sm = 0 otherwise, gives \(an

9 s)\ > \ for the infinite 
sequence of indices n = nk. 

Let us glance at another example in which A* is generated by a complete (neces
sarily non-compact) subset X but A* is not even functionally closed, so that A is very 
far from satisfying Mazur's theorem. In the theorems of Mazur, Ptak, Isbell [4] and 
Thomas, completeness of X always implies Mazur's theorem for A. 

Let X consist of Kx pairs of points (pa9 qa). Let A be the family of all real-valued 
functions / on X such that for some constant c, for all but finitely many a, f(qa) = 
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^ f(Pa) + c- The weak uniformity induced on X by A consists of all countable 
coverings; so X is complete. But clearly the functional cp(f) = c is well-defined, count-
ably continuous, and discontinuous. 

Special results and problems. Now that we know that Mazur's theorem is 
closely related to completeness in many important special cases but not in general, it 
becomes very interesting to look at the proofs in the special cases, and to see if they 
apply, or why they fail, in other interesting special cases. The unpublished proofs of 
Mazur and Ptak, together with related unpublished proofs of L. Schwartz6) and 
S. Mrowka,7) are apparently very specialized (for C(X), except for Schwartz's result, 
which concerns C00 functions on a manifold). My proof [4] involves a rather long 
chain of lemmas on "patching" functions by means of lattice operations, and a notion 
of support which permits convergence arguments showing that a sequentially conti
nuous functional is supported by a finite set and is therefore continuous. 

My student E. S. THOMAS has modified my patching arguments and, using the 
same notion of support and the same convergent filter of sets, has proved the follow
ing: Let X be a set and A a linear family of real-valued functions on X. Suppose (1) for 
every fe A and every uniformly continuous C00 function g of one real variable, gfis 
in A. Further, regard X as a topological and uniform space in the weak uniformity 
induced by A, and suppose (2) every function locally coinciding with functions in A 
is in A. Then A satisfies Mazur's theorem if and only if X is complete. This result of 
course contains the Mazur-Ptak theorem and a good theorem on differentiable mani
folds. It also provides an interesting addition to the theorem of [4], applied to spaces 
C(//X) of all uniformly continuous functions. 

In a different direction, H. H. Corson has pointed out a device for deducing 
Mazur's theorem for a space A when it is known for a suitable space B. The lemma, 
properly formulated, has a trivial proof. 

Corson's Lemma. Suppose B is a linear family of functions on a set X and A is 
a linear subfamily of B which is dense in some topology satisfying the first axiom of 
countability and finer than the topology J of pointwise convergence on X. Then with 
respect to J, every sequentially continuous linear functional on A has a unique se
quentially continuous extension over B; and A satisfies Mazur's theorem if and only if 
B does. 

From this lemma and the theorem of [4] one can prove: 

Corollary. Let A be a linear algebra of real-valued functions determining the 
topology of a Lindelof space X, not all vanishing at any point, and such that X is 
a countable union of subsets on which all the functions in A are bounded. Then in 
the topology of pointwise convergence on X, A satisfies Mazur's theorem. 

This applies in particular to the space of real polynomials in one variable, in the 
topology of pointwise convergence on any infinite subset X of the real line. However, 

6 ) See [5], p. 69. 
7) See [1], p. 75. 
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the question is open if we take for X, say, the unit disc in the complex plane. A more 
interesting, equally open question: does Mazur's theorem hold for the space A of 
complex polynomials in the topology of pointwise convergence on the unit disc? 

One concluding remark. The method of [4] may yet yield further results, even for 
examples (such as the complex polynomials) in which there is a proper Silov boundary. 
However, for this it would be necessary to modify the notion of support for a function
al. In [4] this is defined in terms of the usual notion of support for a function, which 
is clearly inappropriate for analytic functions. One may say, for a space A of functions 
on a set X, that a subset S of X supports a sequentially continuous linear functional (p 
on A when for every sequence {fn} in A converging to zero pointwise on S, (p(fn) 
converges to zero. For the applications in [4] and Thomas' thesis, this notion is 
equivalent to the other one. 

No te (added in proof). I find the results of Mazur1) and Mrowka7) were pu
blished; see S. Mrowka, Studia Math 21 (1961), 1 — 14. My paper [4] and Thomas' 
thesis4) are combined in one paper submitted to Proc Amer. Math. Soc 
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