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CONCERNING INFINITE-DIMENSIONAL SPACES 

L. TUJVtARKIN 

Moscow 

The problem whether every infinite-dimensional compactum ( = compact metric 
space) contains closed subsets of an arbitrary finite dimension, was formulated by 
myself some 35 years ago and it still remains open (even for closed one-dimensional 
subsets). 

In this note some theorems concerning this problem are considered. 
A metric space of infinite dimension is called countable-dimensional if it is a 

union of a countable number of O-dimensional subsets. In the opposite case we call 
the space strongly infinite-dimensional. 

The following definitions generalize a classical notion due to Urysohn. 
An infinite-dimensional compactum is called a Cantorian manifold in the weak 

sense (or in the strong sense, respectively), if it cannot be decomposed by any finite-
dimensional (or by any finite- or countable-dimensional, respectively) closed subset.1) 

The proof of the following theorem 1 is very easy: 

Theorem 1. An infinite-dimensional compactum X contains closed subset of an 
arbitrary finite dimension if and only if it contains some countable-dimensional 
closed seU 

Theorem 2 improves my older result [1]. 

Theorem 2. Let X be an infinite-dimensional compactum. Then either 

a) X contains a countable-dimensional closed set 
or 

b) X contains an infinite-dimensional Cantorian manifold in the strong sense. 

The two cases do not exclude each other. 
However, the question whether every infinite-dimensional Cantorian manifold 

in the strong sense contains a countable-dimensional closed subset, still remains 
open. 

Now we shall consider arbitrary separable metric spaces. 
Theorem 3. Under the assumption of the continuum hypothesis every strongly 

infinite-dimensional separable metric space X contains a set A with the following 
property: 

1) In the weak case we suppose moreover that the space can be decomposed by some 
countable-dimensional closed subset. 
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The intersection of A with every finite-dimensional or countable-dimensional 

subset of X is at most countable. 

This theorem generalizes a result of W. HUREWICZ [2]. The proof makes use (as 

does the construction by Hurewicz) of the fact (proved by myself in the year 

1925) that every n-dimensional subset of a separable metric space X (with a given 

metric) is contained in some G -̂set of the same dimension, lying in the metric space X. 

Concerning the countable dimensional spaces, I have proved in [3] the 

Theorem 4. Every countable-dimensional separable metric space X is a union 

x = u a», 
i=i 

of 0-dimensional subsets 90^ such that the sum of any finite number of them is still 

O-dimensional: 
N 

dim U 9)?i = 0 for any finite N . 
i = l 

Let us finally point out that even the question whether in every countable dimen

sional separable metric X there is contained a subset of an arbitrary iiinite dimen

sion, still remains open. 
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