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NEW RESULTS IN UNIFORM TOPOLOGY

VoAoEfremovid (Jaroslavl) and A.G.VainStein (Moscow)

O. This paper contains a short review of some achievements att-
ained in the last 5 years in uniform topology (or proximity geomet-
ry) of geodesic gpaces by a group of mathematicians of Moscow,Voro-
ne¥, Gorky and Jaroslavl,We remind that a geodesic space (g.8) (X,¢)
is a complete metric space such that every two points =x,ye X may

be connected by a rectilinear segment (i.e.,an isometric image of a
closed interval in R ),

These results may be naturaly grouped into three directions
(which are, however, closely connected):

le Proximity invariants of geodesic spaces,

2, Extension of equimorphisms (i.e,, uniform isomorphisms) of
geodesic spaces.

3. Applications of uniform topology to differentiable dynamics,

Our main point is to describe the results and to discuss the re-
lated unsolved problems, while the proofs will be merely outlined,

Most of the results listed below being obtained in the closest
co=operation with D,A,DeSpiller, L,M,Lerman, E,A,Loginov and E,S,T4-
homirova, we are deeply grateful to then,

1, P t variants in Geodesic Spaces

That is one of the oldest problems in proximity geometry of g.s.
We camnot even list the main results obtained here and only refer ito
papers [1 = 9], But we would like to mention two circumstances concere
ning this topicy first, that most of the proximity invariants kmown
are, in fact, invariants of the uniform homotopy type (uchets, see[?,il
Second, that these invariants have been successfully used not only to
distinguish homeomorphic and not equimorphic go.s., but also to solve -

some problems concerning uniform retrgction [8] and behaviour of equi=
morphism at infinity [5,6] .
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2, Extension of Equimorphism of Geodesic Spaces

Motivation, The investigation of this topic has been started on
the base of the results concerning the behaviour of equimorphisms of

the n~dimensional Lobadevsky space A T (see [10] ):

Theorem 2,1, Let B® be an n-dimensonal ball representing the FPoin-
caré model of A®. Then every equimorphism of AP can be extended
to a homeomorphism of the closed n=ball %,

Here we shall discuss a recent generalisation of this theorem
(11-13] .

Remarks, &) The points of the Poincaré sphere at infinity sn=1

(= BR\BR ) are naturally identified as rectilinear rays starting at
the origin O of the Poincaré model B® , Below we shall also deal
with the constructions using rectilinear rays.

b) Let us consider two uniformities in B™ : one of them may be cal-
led the gtandard uniformity and corresponds to the inclusion B%c B® N
while the other is defined by the Poincaré metric

as® = (1 + r2)'2 (dr2 + 1% 48 2)

and will be called the Lobalevsky uniformity, Thus Theorem 2,1 is
equivalent to the following

Theorem 2.1'. Every homeomorphism of B" which is an equimorphism
relative to Lobacevsky uniformity, has the same property relative to
the standard uniformity.

This approach suggests the follwoing unsolved

Problem: To describe effectively all pre-compact uniformities compa-
tible with the topology of B® which may replace the standard unifor-
mity in Theorem 2,1 .

To generalize Theorem 2,1 we shall need the following notions,

Fiberings and Compactifications, Let X be a g.s. such that
every bounded subset of X is totally bounded, Let us suppose that,
for a certain open bounded QcX, X\ Q can be fibered into a set =
of rectilinear rays f in the following semse: = is given a compact
topology and the map =x+~>(f , h) 1is a homeomorphism between X\ Q

~—

and = x RY y where x€X\Q, f = px is the ray of the fibering ru-

=
nning through x and h = h(x) is the distance between x and the
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starting point of f .

Definition 2,2, A sequence x € X will be called ='-directed to the
ray fe =iff h(xn).—voo and px - § .

Definition 2,3, A compactification X corresponding to a fibering
= 1s the space X U = , the topology of this union being defined

by convergence of E ~directed sequences,

Definition 2,4, A fibering = in a g.s. X will be called exact iff
for every other fibering E' in X the identity map idx X— X
may be extended to a continuous map T : Xr-u—’ X.—-. .

l—l

Obviously I =, and an are homeomorphic if ._.land __,2 are
both exact; therefore any compactificat:.on of X corresponding to an
"exact fibering will be denoted by X .

Remark; It is easy to see that Definition 2,4 1is equivalent to the
following condltlon: for every fibering =, in X every ._:,-dlrected
sequence is also [ ~directed,

Examples of Fiberings, 1) Let X = ¥¥ pe a complete simply cone
nected Riemannian manifold of non-positive 2-curvature, QcX an are

bitrary ball, We can obtain gn exact fibering = in X consisting of
all rectilinear rays orthogonal to 9Q . X,:' is obviously homeomor-
phic to the k-ball BX , ~

2) Let X =A% be the Lobadevsky plane, Q cA2 be a bounded open
subset with- Gl =smooth boundary which consists of two horocycle arcs,
belonging to a pair of different horocycles orthogonal to the same
straight line in A, s and connected by a pair of circle arcs. The
fibering ,-, "Z" consisting of all the rays §f orthogonal to 9Q is not
exact,

Equivalent gnd Separated Sequences,Sufficient Conditions for Exact =
ness of a Fibering, Since E." is compact, it posesses the only unie-
formity W - compatible with its topology.

Definition 2,5, Let .= be a fibering in a g.s. XyX,y Y€ X two
-t
sequences going to infinity when n —»oco, We will call them ,—, =equi=

yalent (x~y, rel.;Z) iff VUe W INezZ' : Va>N (x,,y,)€U.
If, for every increasing sequence of j.ntegers Ny xnk-ﬂ- ynk rel,



69

= , then we will call them 3-separgted (xn‘\, Y, Trel. S )e
The following statement is quite obvious,

Proposition 2,6, Let = be an exact fibering and ='an arbitrary
one, Then a) X,~ ¥, rel. =' implies XY, Tele = 3 b) X\ Yy

rel. = implies x, Ly, rel. =

Thus we shall call two sequences equivalent if they are equiva=
lent relative to any exact fibering,

Most of the results listed below are based upon the following
simple but important

Lemma 2,7, Let = be an arbitrary fibering in a g.s. X, X s Y€ X,
Xy, rel. = o« Then the entire rectilinear segment XY, lends %o

infinity with n, i.e. every compactum KCX intersects only a fini-
te number of these segments,

Sketch of the proof, Suppose X, ~vy, rele =, Z € X ¥y h(zn) <

fcVn. Let d=diem {Z x{0}} , f,=vx; 7y =0y, . Then
for some n the distance ?( (fn,c+d+1),(7n,c+d+1))<1.

[}

2(¢ + d), but, on the other

Obviously (a(xn, ¥q) 2 hixy) + h(y,)
hand, ?(xn,yn) < h(xn) +h(y,) =2(c+4d) -1,

Lemmg 2,7 dimplies the following

Theorem 2,8, a) If a fibering = in a g.s. X satisfies the follo-
wing Condition A , then = is exact.

Condition A , For every pair of sequences Xp9¥ps xn‘\ In rel, = ,
there exists a fixed ball K< X such that X y NK #¢ .

b) If some fi‘bering:‘,1 in X satisfies Condition A , then any exact
fibering in X also satisfies the same condition,

Thus we may say that the space X satisfies Condition 4 , if
any fibering in X satisfies this condition,

Geometry implied by Condition A may be illustrgted by the fo-
llowing

Theorem 2,9, If a ges. X satisfies Condition A , then every two
points x,y€ X can be connected by a rectilinear path (relative to
the metric ¢ e
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Sketch of the proof, The only case to study is that of two points x,
yeX\X, Let x_,y,€X, x,~>X, y,—>y in X . Then vy, rel.S
and thus Condition A implies the existence of a point 2,€ Xy, such
that h(xn) is bounded., It is easy to choose an increasing sequence
of integers n, such thaz E;lk—y;’k tends to a straight line [cX

linking x with y in X

Examples, 3) The Lobalevsky space A® satisfies Condition A H
Theorem 2,9 describes the limiting line effect,

4) Let X be a surface of revqlution with the Riemannian metric gi-
ven by the formula

ds® = ar® + £2(r) a0 2,

0<es2T™ , reR' ;

a) if f(r) = r®, a 21, than X satisfies Condition. A iff a>1;
b) if £(r) = rlogr, then X satisfies Condition A

The Notion of & X -Chain, Equimorphisms of Spaces with Exasct
Fiberings, To describe the behaviour of the image of a rectilinear

ray under an arbitrary equimorphism, we shall introduce the following

Definition 2,10, Let A€R, A>0 , x,y€X . A finite set 2Z =

= {zy€X | 0% 3¢ m} will be called & A =chain, linking x with
y , iff v 1 '

a) zy=x, Z=y; b) 159(zj_1, z3)<2; c) Ek ?(z:j-l_’ zj)s
<Nelzpys 7)) Vi 1:1Sk€1€a .

The properties of uniformly continuous maps proved in (1] imply
the following important

Lemma 2,11, Let X be a geSey f 3 X—=X an equimorphism, Then the-
re exist A 21, ¢>0 such that, for every x,yeX , either sa(x,y)<
<c or there exists a A =chain Zc £(Xy) 1linking £(x) with £(y).

Now we shall strengthen Condition A replacing rectilinear se=-
gments by A =chains, Thus we obtain the following
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Condition B o For an arbitrary A <1 and for an arbitrary sequence

of A =-chains Zn” {xn= Z,09 Zpiseces =yn}such that X\ ¥n s there
exists a fixed ball KcX which intersec¥s all these chains,

Remark, Obviously Condition A may be replaced by Condition B in
Theorem 2,8,
Now we shall formulate the central results of this section,

Theorem 2,12, If a gess X satisfies Condition B , then every equi=
morphism £ ¢ X=X preserves the equivalence relation between the se=
quences in X , ‘

Theorem 2,13, If a gese X wsatisfies Condition B , then every equi=-
morphism f : X =» X can be extended to a homeomorphism f : X - X ,

Both these theorems are obviously implied by Lemmas 2,7 and
2¢1le We shall call stable a gese X satisfying the conclusion of
Theorem 2,13,

A Metric Condition for Stability, To check whether Condition B
is satisfied, we shall introduce the following construction., Let

d (4 ) be any metric on = compatible with its topology. We de-
termine a funetion @ r* — r* by the following formula:

a(%) = inf { e (xy)/alf , )| f =px, 7 =D,

(3)
Bx) 2 ¢, gy 22} .
Theorem 2,14, If the infinite integral
©0
J = f((u,(t)"l)dt (4)
1

converges, then = satisfies Condition B ,

Sketch of the proof, Suppose that Z ={x, = Zygeeees Zyy = T} 18

a sequence of A -chains, Zn goes to infinity with n, N ¥y rel,
= .+ Let us denote fo=0%p Ty =DV bp= h(x,), by = (z,,) ,

0£k<m , L=3\+13 wemay suppose that h.nSb%, For all n
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sufficiently large
BE>(h, + %)/ T (5)3

on the other hand
-~ k 1l
Wf g Ta) € Lo g (o s mde (B =200 s (6))

since MW does not decrease (5) and (6) imply

aCf 0 1 S Cpenat s
h,/1m=2

thus da( § ,, 1,) >0, since J converges,

Examples, 5) AP satisfies Condition B since M grows €XPoe
nentially; this proves Theorem 2,1,
6) Let X be a surface of revolution described in Example 4 a); if
a >1 then X satisfies Condition B .,
7) Let X be a surface revolution described in Example 4 b) ; it ig
easy to see that the map £ ¢: X+ X given by the formula

‘ [*)
£(r, 8) = {(r' Jo wae

(ry ® + loglogr), rde

is an equimorphism of X . Since f cannot be extended to X s X
does not satisfy Condition B 3 thus A does not imply B ,

Exactness of the "Central" Fibering, To prove that the "central"
fibering of Example 1 is exac;t, we shall introduce a new condition

of exactness,

Theorem 2,15, If a fibering = in a ge8¢ X satisfies the following
Condition C , then = is exact,
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Condition C o Por a fibering = in a g.s. X

(€C1) If =x ,y,€X, h(x))—>oco, S’(xn’yn) < const, then

xn’\/ yn rel, E .

(C2) Every rectilinear ray in X is = =directed.

(C3) 1If a rectilinear ray [c X is T -directed to a fe =

then the distance between a point x el , going to infinity along
" 5 and § does not increase,

The classical results by J.Hadamard and E,Cartan obviously imply
that the "central™ fibering satisfies Condition C

The proof of Theorem 2,15 is based upon the following trivial

Lemma 2,16, Let = be an arbitrary fibering in a g.s.
let x, be = -directed to fe = s fp"
IN = N(z,€) : Vn>N Ivpe 48

X, xeX,
px, o Then V zef s Ve>0
sa(yn.z) < € o

Sketch of the proof of Theorem 2,15,

fiber:l.ngs in a ge.s.
= =directed to f eSS

to

Suppose that = and ='are two
X ’ = satisfies Condition ¢ , x €X, x, is
’ fn =D xn 3 ‘then f’n' f'are = -directed
fn' _fe = s respectively, Using Lemma 2,16 we may find a sequence
Ip € f'ns Blyy) =00, such that ¢(yy, f') > 0, (C3) implies that
?(yn, £ ) <. const for Vn, Let WV, € f'n be the nearest
points to XpoTp 0 respectively , and let W, € be the nearest po=-
int 1':2' Yo o Then y~w, rele S , xyvu, Trels = and vmyy
rel. = o Since obviously u,~v, rel, = we have x ~vw, rel,= .

Remark, We do not know if Theorem 2,8 b) may be extended to Conditie

on C 3 this is true in any complete, simply connected Riemannian
manifold of non-positive 2-curvature,

Adjoning Results, These concern mainly two problems: a) equi-

morphisms of AP and strong rigidity theorems, see [9, 14-16] ;
equimorphisms of R®

may be obtained.
rather trivial,
Set Mﬁ

.9 See [17] s Where also some "rigidity theorems"
We shall just mention one of them which is in fact

s XER, a 3-manifold with locally Euclidean Riemannian




74

metric obtained from {(x,y,2)€ B’ |0<2<1} by 1dentifying (x,5,0)
with (x cosg=- y sin«, X sina+ y cosd, 1)

Iheorem 2,17, M, and M; are equimorphic. iff |01|E|P| mod 2X.

3. Applications of Uniform Topology to Differentiable Dynamics

Results listed below have been obtained in collaboration with
I-I.M.Lermano

Motivation, The problem has been suggested by the new approach

- developed by L.M,Lerman and L,P.Silnikov [18], To study time-depen=

dent vector fields on a compact smooth manifold M , they considered
Mx R as posessing the Cartesian product uniformity. Using this uni-
formity and the l=foliation into integral curves of a time dependent
vector field V(x,t), xeM, teR, ?eTxM, most of the qualitative
properties of such a vector field may be expressed, The triple (Mx R,
Cartesian product uniformity, l-foliation into integral curves of a
time-dependent bounded vector field ¥ ) will be called an integral
portrait of ¥ . Equivalence of two vector fields has been defined.
in such a way, and some structural stability theorems have been pro=
ved,

Here uniformity is essential, since any time dependent vector
field generates an integral portrait topologically equiValent to the

trivial l-foliation L : MxR = U ({x}xR).
xeM

Let M be a compact c* ~-manifold, feDirel(M). We are going
to produce a triple (topological space M xR , a certain compatible
uniformity in MxR , 1l=-folimtion L ) such that most of the quali-
tative properties of £ may be studied using this triple, All we ha=
ve to do is to define a compatible uniformity in Mx R , Define
£ : MxR —-MxR by the following formula:

#(x,4) = (£(x), t-1), x€M, teR,

mma 3,1, There exists a weakest compatible uniformity Y , on
MxR such that £ generates a uniformly equicontinuous group rela=-
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tive to WUy o

00
Sketch of the proof, MxR/{ z = £(z)} is a compact C -manifold
Mg, and the natural projection MxR - M, is a (smooth) covering. .

The only compatible uniformity in M, can be naturally lifted up to
Mx R to produce the desired uniformity W, .

Remark, We can easily see that Jlp is determined by a certain ¢
Riemannian metric on MxR ,

Later the pair (Mx R, Up) will be abbreviated to Mf and the
triple (Mx R, u,f,x.) to the pair (Mf,Lf). Mf will be called a
non-autonomous suspension over f ,

Definition 3,2, f, g€Diffl (M) are called & -gquivalent iff there
exists an equimorphism ¢ : M, - Mg such that @(Lf) = Lg.

This definition is motivated by the following trivial

Proposition 3,3, Two leaves L(x), L(y)€ L, such that IL(x) >3 (x,0),
L(y) 3 (y,0), are in proximity relative to Up 1iff the same holds.
for the orbits of x and y under £ relative to the only compa=
tible uniformity on M .,

Clagsification of Non-Autonomous Suspensions, Now it seems
quite natural to suggest the following

Froblem: When are M, and Mg, f,2 Diff(M) s equimorphic? This
problem may be considered as directly related to those of the first

section of this paper, but we have described above its relation to
dynamics,

To illustrate the problem, let us consider some

Examples, 1) Let M = S® be an n-dimensional sphere, Since the
group Homeo (S™) consists of only two-path connection components,
every fe Diffl(M') gives a non-autonomous suspension equimorphic to
s R,

2) Let M be an arbitrary smooth compact manifold, and let £ ge=-
nerate an equicontinuous group of homeomorphisms of M . Then Ef
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is equimorphic to MxR ,

Remarks:s a) It is easy to prove that fe D:!.ff]-'(M) is d-equivalent
to idy iff £ generates an equicontinuous group.

b) The previous remark is of special interest when compared to
Theorem 2,17,

3) Let M = 1 be a 2-torus, fO'fl’f2’f3 its linear diffeomorp-
hisms corresponding to matrices:

(ST R Y A P e

ﬁf will be abbreviated here to M, . To distinguish M, neither.

. uniform homology [3,4] nor the volume invariant [1] are sufficient,.
Using the ideaa of [2) one may check, however, that ﬁi is not equ=
imorphic to M;j’ i=0 1, = 22,3 o« But Ehis is not s_ufficient to

d:.atinguish Mo from Ml and M2 from M3.

* Uniform Homotopy Type of NoneAutonomous Suspensions, Luckily,

uniform homotopy type of non-autonomous suspensions over diffeomor-
phisms can be studied in rather an explicit way (see [19,20] ).

Theorem 3,4, Mf,M have the same u.h.t. iff there exist n, me z\{0},

w: M—>M g homotopx equivalence, such that ¢ o £ and o U4
are homotopice

The proof will be outlined below; first we shall list some corolla=-
ries, '

Corollary 3,5, If ﬁ'f is equimorphic to M xR , then there exists
a ke Z\ {0} such that fk is homotopic to the identity map.

Corollary 3,6, If feDiffl(M) is Anosov (see [21] ), then M, is
not equimorphic to MxR,

This corollary is implied by the previous one and the following
important

Theorem 3,7, No Anosov diffeomorphism of a compact manifold is homo=
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topic to the identity map.

The proof of this theorem belongs completely to algebraic topo=
logy and is therefore omitted here,

Corollary 3,8, Let M = ™ be an s-torus, £,g8€ GL(s,2) its linear
diffeomorphisms. Then T3 and T; are equimorphic iff there exist
n,me z\{0} and he GL (s,2) such that he £% = gbh .

To prove this corollary one should apply Theorem 3,4 and consi-
der the natural action of f£,g,¢ in the fundamental group of M -
Notice, that this corollary implies the non-existence of an equimore
phism between ﬁi and I s £ 3 , described above in Example 1,

The purely algebraic problem, involved now with the uniform
classification of non-autonomous suspensions over linear diffeomorp-
hisms of tori, seems rather difficult, and we do not know the complete
solution even for s = 2!

Corollary 3.8 may be easily generalized to the algebraic diffe-
omorphisms of infra-nilmanifolds (see [22] ). Thus the problem of
uniform classification of non-autonomous suspensions over all Anosov
diffeomorphisms, known to us, is reduced to a purely algebraic prob=
lem (cf,[23]).

Sketch of the Proof of Theorem 3.4, The proof of Theorem 3.4 is

based upon two propositions listed below,.

Lemma 3,9, Let K be a compactumy, N a Riemannian manifold, A an
arbitrary infinite set of indices, {f& :K >N xe A} a precompact
set in C(K,N) (relative to the usual topology). Then there exists
e A -such that for an infinite subset BCA foc* and f@ are
homotopic whenever p € B,

This is quite obvioug,but implies some interesting corollaries,
€eZe )

Corollary 3,10, Let M be a compact Riemannian manifold, and let
fe Hymeo(M) generate an equicontinuous group. Then fk is homotopic
to idy for some integer k # O,

Lemma 3,11, Let f,geDife*(m) , @ : M, — M, be & wiforn homo-
topy (u.h.) equivalence, M, = Mx {o} e M, . Then there exists a
sequence of integers 1(k) such that
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a) gl(k)o d o fkl M M -'ﬁg is a precompact set of mappings,
()

ke€Z ; b) there exists L21 such that L +<|1(x)/k| £ L.

To prove this lemma one should use the properties of u.h. equi=-
valences of g.s. described in [9] ; these properties imply that 1(k)
may be defined by the formula (M x {t} c ﬁg):

k) = - entier (inf {t|M x {t}nd o T ) # P ]).

As far as the necessity of its conditions is concerned, Theorem
3.4 is obviously implied by the two lemmas above., Sufficiency is ob-
vious,

Adjoining Results, These concern mainly necessary conditions for
two diffeomorphisms to be é‘-e_quivalent. We shall mention two theo-
rems to illustrate this approach.

Theorem 3,12, ILet f,geDiffl(M) sand let f and g bed\-equivalent; if
topological enthropy of £ is O , then the same holds for g .
Theorem 3,13, Under the assumptions of the above theorem there exist

integers m,n # 0 and ¢ €Homeo (M) such that t('lo g"nu(ofm be=-
longs to the path connection component of id,M in Homeo (M),

We hope to achieve further results in this direction involving
structural stability of wider classes of time dependent diffeomorphi-
sms and vector fields,
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