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HEW .RESULTS IN UNIFOBM TOPOLOGY 

V0A#Efremovic (Jaroslavl) and A#G#Valnsteln (Moscow) 

0# This paper contains a short review of some achievements att­

ained in the last 5 years in uniform topology (or proximity geomet­

ry) of geodesic spaces by a group of mathematicians of Moscow,Voro-

nezf Gorky and Jaroslavl#We remind that a geodesic space (g#s) (If f ) 

is a complete metric space such that every two points xfy € X may 

be connected by a rectilinear segment (i#e#Jan isometric image of a 

closed interval in R ) # 

These results may be naturaly grouped into three directions 

(which aref however, closely connected): 

1# Proximity invariants of geodesic spaces* 

2# Extension of equimorphisms (i#e#f uniform isomorphisms) of 

geodesic spaces* 

3# Applications of uniform topology to differentiable dynamics. 

Our main point is to describe the results and to discuss the re­

lated unsolved problemsf while the proofs will be merely outlined* 

Most of the results listed below being obtained in the closest 

co-operation with D#A#DeSpillerf L#M#Lermanf £#A#Loginov and E#S#Ti-

homirova, we are deeply grateful to them# 

1# Proximity Invariants in Geodesic Spaces 

That is one of the oldest problems in proximity geometry of g#s# 

We cannot even list the main results obtained here and only refer to 

papers [1 - 9]« Bui? we would like to mention two circumstances concer­

ning this.topicj first, that most of the proximity invariants known 

aref in fact,invariants of the uniform homotopy type (u#h#t#f see[7f9]). 

Second, that these invariants have been successfully used not only to 

distinguish homeomorphic and not equimorphic g#s#f but also to solve 

some problems concerning uniform retraction [8] and behaviour of equi-

morphism at infinity D>f6] «, 
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2# Extension of Equimorphism of Geodesic Spaces 

Motivation* The investigation of this topic has been started on 

the base of the results concerning the behaviour of equimorphisms of 

the n-dimensional Lobacevsky space A n (see D-&1 ) : 

Theorem 2#1# Let Bn be an n-dimensonal ball representing the Poin­

care model of An» Then every equimorphism of A n can be extended 

to a homeomorphism of the closed n-ball Bn
 # 

Here we shall discuss a recent generalisation of this theorem 

[11-13] • 

Remarks# a) The points of the Poincare sphere at infinity Sn 

(= Bn\Bn ) are naturally identified as rectilinear rays starting at 

the origin 0 of the Poincare model Bn
 # Below we shall also deal 

with the constructions using rectilinear rays# 
b) Let us consider two uniformities in Bn % one of them may be cal­

led the standard uniformity and corresponds to the inclusion B ncB n
 f 

while the other is defined by the Poincare metric 

ds2 - (1 + v2)-2 (dr2 + r2 d8 2) 

and will be called the Lobacevsky uniformity. Thus Theorem 2#1 is 

equivalent to the following 

Theorem 2#1*# Every homeomorphism of Bn which is an equimorphism 

relative to Lobacevsky uniformity, has the same property relative to 

the standard uniformity. 

This approach suggests the follwoing unsolved 

Problem; To describe effectively all pre-eompact uniformities compa-, 

tible with the topology of Bn which may replace the standard unifor­

mity in Theorem 2#1 # 

To generalize Theorem 2#1 we shall need the following notions. 

Fiberings and Compactifications# Let X be a g#s# such that 

every bounded subset of X is totally bounded* Let us suppose that, 

for a certain open bounded QcX, X\Q can be fibered into a set S 

of rectilinear rays f in the following sense: 2 is given a compact 

topology and the map x»-*(|* » h) is a homeomorphism between X\ Q, 

and ^ x R , where xeX\Q f / s px is the ray of the fibering ru­

nning through x and h « h(x) is the distance between x and the 
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starting point of J • 

Definition 2.2. A sequence xn€ X will be called *P-directed to the 

sai / c 3 i f f h^xn^ ~* °° and P ^ ~* f • 

Definition 2.3. A compactification X s corresponding to a fibering 
^ is the space l u 2 i the topology of this union being defined 
by convergence of .c, -directed sequences. 

Definition 2.4,. A fibering [£ in a g.s. X will be called exact iff 
for every other fibering £ " in X the identity map idx : X —+ X 
may be extended to a continuous map V : Xr,/-^ X r-t . 

Obviously X © and X n are homeomorphic if S^and ^J 2
 are 

both exact; therefore any compactification of X corresponding to an 
exact fibering will be denoted by X . 

Remark* It is easy to see that Definition 2.4 is equivalent to the 
following condition: for every fibering £J in X every S-directed 
sequence is also £J -directed. 

k 
Examples of ffiberings. 1) Let X * Mr* be a complete simply con­

nected Riemannian manifold of non-positive 2-curvature, Q c X an ar­
bitrary ball. We can obtain an exact fibering £ in X consisting of 
all rectilinear rays orthogonal to 3Q • X ^ is obviously homeomor­
phic to the k-ball B k . ~ 

2 2 
2) Let X » A be the Lobacevsky plane, Q c A be a bounded open 

\ 
subset with 0* -smooth boundary which consists of two horocycle arcs, 
belonging to a pair of different horocycles orthogonal to the same 
straight line in A f and connected by a pair of circle arcs. The 
fibering 3 consisting of all the rays / orthogonal to 9Q is not 
exact. 

Equivalent and Separated Sequences.Sufficient Conditions for Exact -
ness of a Fibering. Since £ is compact, it posesses the only uni­
formity ^ compatible with its topology. 

Definition 2.5. Let ̂  be a fibering in a g.s. Xfx__f y^e X two 
n n t—f 

sequences going to inf inity when n -*-<x># We w i l l c a l l them p* -equi­
valent ( x n ~ y n r e l . £ ) i f f VU€ U 3NeZ + : Vn>N U n f y n ) e U # 

If f for every increasing sequence of integers nk f xn *c- y r e i # 

k nk 
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E $ then we will call them ^ -separated (x X y rel. !El )• 
The following statement is quite obvious. 

Proposition 2.6. Let H he an exact fibering and H'an arbitrary 

one* Then a) * n ~ y n rel. £ ' implies ^yyn rel. £ ? b) x nly n 

rel. E implies x n\ yn rel. E' • 

Thus we shall call two sequences equivalent if they are equiva­

lent relative to any exact fibering 

Most of the results listed below are based upon the following 

simple but important 

Lemma 2.7.» Let El be an arbitrary fibering in a g.s* X, xn, yn6 X, 
xnV/ yn r e l # -H • ̂ ken the entire rectilinear segment ^ ny n tends to 

infinity with n f i.e. every compactum KCX intersects only a fini­

te number of these segments* 

Sketch of the proof* Suppose x
n ^ y n -?e~U £ $ zne xnJn> h(2n) ~ 

£o V n. Let d » diam { £ * C0}} » f n
 s Px

n* ?n * pyn • T h e n 

for some n the distance p( (|G, c + d + l) f(? n, c + d + 1))<1 f 

Obviously f>(xn, yn) > h(xn) + h(y ) - 2(c + d) f but, on the other 

hand, ften$yn) < h(xn) + h(yn) - 2(c + d) - 1 • 

Lemma 2.7 implies the following 

Theorem 2.8<> a) If a fibering E in a g.s. X satisfies the follo­

wing Condition A f then El is exact. 

Condition A * For every pair of sequences xnfynf xnA. yn rel. S f 

there exists a fixed ball K c X such that 3C^ynO K £ <p . 

b) If some fibering 2 in X satisfies Condition A , then any exact 

fibering in X also satisfies the same condition. 

Thus we may say that the space X satisfies Condition A f if 

any fibering in X satisfies this condition. 

Geometry implied by Condition A may be illustrated by the fo­
llowing 

Theorem 2Q9. If a g.s. X satisfies Condition A , then every two 

points xfyeX can be connected by a rectilinear path (relative to 

the metric P ). 
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Sketch of the proof* The only case to study is that of two points x$ 
y € X \ X # Let xn»yn€ Xf xn~*>x9 y n-*y in X . Then x n ^ y n rel.S 
and thus Condition A implies the existence of a point zn6 3-̂ yn such 
that h(x) is bounded. It is easy to choose an increasing sequence 
of integers nfe such that x n yn tends to a straight line PcX 
linking x with y in X #

 k k 

Examples. 3) The Lobacevsky space A n satisfies Condition A ; 
Theorem 2#9 describes the limiting line effect. 
4) Let X be a surface of revolution with the Riemannian metric gi­
ven by the formula 

ds2 - dr2 + f^r) d9 2f 

0£9*2ir f r€R+ | 

a) if f(r) « ra
f a k lf than X satisfies Condi t ion . A iff a > 1; 

b) if f(r) « rlogrf then X satisfies Condition A # 

The Notion of a A -Chain. Equimorphisms of Spaces with Exact 
Piberings. To describe the behaviour of the image of a rectilinear 
ray under an arbitrary equimorphismf we shall introduce the following 

Definition 2.10. Let A € R f A >0 f x fy6X • A finite set Z • 
» { Z J € X J 0 £ j -= m J will be called a X -chain, linking x with 
y , iff A 

t\ 
í \ ^ z k - 1 , Z l) V k , 1 : 1 . Skálám 

The properties of uniformly continuous maps proved in [1] imply 
the following important 

lemma 2«11« Let X be a g«s#f f « X-*X an equimoirphisnw Then the­
re exist A -* lf o>0 such, thatf for every x fyeX f either p(xfy)< 
<c or there exists a > -chain Zc f (xy) linking f(x) with f(y)# 

Now we shall strengthen Condition A replacing rectilinear se­
gments by \ -chains• Thus we obtain the following 
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Condition B * For an arbitrary A ^ l and for an arbitrary sequence 

of > -chains Ẑ « [x^ znQf znl,...f z^Yii3™*- *^a* V ^ yn f there 

exists a fixed ball KcX which intersects all these chains. 

Remark* Obviously Condition A may be replaced by Condition B in 

Theorem 2#8# 

Now we shall formulate the central results of this section* 

Theorem 2.12« If a g*s* X satisfies Condition B f then every equi-

morphism f : X-*X preserves the equivalence relation between the se­

quences in X * 

Theorem 2«13* If a g.s* X satisfies Condition B f then every equi-

morphism f : X -*> X can be extended to a homeomorphism f : X -*• T f 

Both these theorems are obviously implied by Lemmas 2.7 and 

2*11* We shall call stable a g*s* X satisfying the conclusion of 

Theorem 2.13* 

A Metric Condition for Stability* To check whether Condition B 

is satisfied, we shall introduce the following construction* Let 

d (• f • ) be any metric on 2 compatible with its topology* We de­

termine a function ji: R+ -* R+ by the following formula: 

/t(t) = inf { f (xfy) / d(/ f 7 ) | f « pxf 7 - py f 

(3) 
h(x) > t f ?(xfy) -* 2 j * 

Theorem 2«14« If the infinite integral 

j«J i t t e r 1 )** (4) 

convergesf then £ sa t i s f i e s Condition B * 

Sketch of the proof* Suppose that z
n ={:% * 2 5

n o , # # # > V " y n } i s 

a sequence of 'X -chains, Z^ goes to inf inity with nf ^y7n *el* 

3 • l e t us denote / n » P^t 7 n " Pyn* V h ( x n ^ *& a ( znk } • 

0 * k £ m̂  f L » 3 X + l f we may suppose that h^ £ h£# For a l l n 
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sufficiently large 

*£>()% + k)/ L ; (5)1 

on the other hand 

d</n. 7д> * ^ ţ Ч . w W - V ( Һ Í - 2 ) Г І ; ( 6 ) ; ) 

since ̂  does not decrease (5) and (6) imply 

oo 

- ( J n . T n ) * / ( ^ ( t ) r x d t ? 
V1-2 

thus d( £ n # T,n) -*0 f since J converges. 

Examples* 5) A n satisfies Condition B since fr grows expo-* 
nentially; this proves Theorem 2#1# 

6) Let X be a surface of revolution described in Example 4 a); if 

a > 1 then X satisfies Condition B # 

7) Let X be a surface revolution described in Example 4 b) ; it is 

easy to see that the map f : X -*• X given by the formula 

f(rt ) • , 
(r, S), pie 

L (r, © + loglogr), r > e 

is an equimorphism of X # Since f cannot be extended to X f X 

does not satisfy Condition B ; thus A does not imply B # 

Exactness of the "Central* Fibering* To prove that the "central* 

fibering of Example 1 is exact, we shall introduce a new condition 

of exactness* 

Theorem 2«15« If a fibering 3 in a g#s# X satisfies the following 

Condition C f then S is exact,, 
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Condition C . For a fibering 2 in a g . s . X 

(CI) If x n f y n e X f hCs^) -*o© f p (x n f y n ) < const, then 

x n ^ y n r e l # 2 • 

(C2) Every rectilinear ray in X is 3 -directed. 

(C3) If & rectilinear ray P c X is 3 -directed to a £ £ 3 
then the distance between a point x £ P f going to infinity along 
P , and I* does not increase. 

The classical results by J.Hadamard and E.Cartan obTiously imply 
that the "central" fibering satisfies Condition C . 

The proof of Theorem 2.15 is based upon the following trivial 

Lemma 2.16. Let 2 be an arbitrary fibering in a g.s. Xf xne X f 
let 7^ be 2 -directed to f e 3 $ f n * pxn . Then V zef $}f£>0 
]N » N(zf £ ) : V n > H 3 y n

€ f n : ?^n'z) < £ • 

Sketch of the proof of Theorem 2«15. Suppose that 2 a114 -E* are two 
fiberings in a g.s. X f 2 satisfies Condition C f y l , 3^ is 
2 -directed to f'eS* 9 f'n - p'*n ; then f'nf fare 2-directed 

to £ nf f e 2 t respectively. Using Lemma 2#16 we may find a sequence 
yn e f n» k^iP ""* °° f such tha* ?^yn» f * ""* 0# ^C3^ implies that 
y Cynf £ ) < const for V n . Let u^f^ G ^ n be the nearest 

points to x n fy n » respectiTely f and let w ne f be the nearest po­
int to yn . Then y n ^ w n rel# 2 t ̂ ^ ^ *el« S and T n ^ y n 

rel.2 • Since obTiously Ojf^"^ rel. 2 we haTe x n ~ w n rel.2 • 

Remark. We do not know if Theorem 2.8 b) may be extended to Conditi­
on C ; this is true in any complete, simply connected Riemannian 
manifold of non-positiTe 2-currature. 

Ad.ioning Results. These concern mainly two problems: a) equi-
morphisms of A n and strong rigidity theorems, see [9f 14-16] ; b) 
equimorphisms of B?1 . f see [l7] $ where also some "rigidity theorems" 
may be obtained. We shall just mention one of them which is in fact 
rather triTial* 

Set M f cC£Rf a 3-manifold with locally Euclidean Riemannian 
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metric obtained from {(xfyfz)€ R
3 1 0 < a j . i l } by identifying (xfyfO) 

with (x coscc- y since f x sin* + y cos<cf 1) 

Theorem 2#17# M^ and Mp are equimorphic i iff |flC| = |p| mod 2JT • 

3» Applications of Uniform Topology to Differentiable Dynamics 

Results listed below have been obtained in collaboration with 

L#M#Lerman# 

Motivation* The problem has been suggested by the new approach 

developed by L#M#Lerman and L#P#§ilnikov [IB] # To study time-depen­

dent vector fields on a compact smooth manifold M , they considered 

MxR as posessing the Cartesian product uniformity* Using this uni­

formity and the 1-foliation into integral curves of a time dependent 

vector field v(xft)f xeMf t€Rf ?e.T7$9 most of the qualitative 

properties of such a vector field may be expressed# The triple (Mx Rf 
Cartesian product uniformityf 1-foliation into integral curves of a 

time-dependent bounded vector field v ) will be called an integral 

portrait of v # Equivalence of two vector fields has been defined, 

in such a way, and some structural stability theorems have been pro-

ved# 
Here uniformity is essential, since any time dependent vector 

field generates an integral portrait topologically equivalent to the 

trivial 1-foliation L : MxR - U ({x}xR)* 
X € M 

Let M be a compact C -manifold, f£Diffx(M)# We are going 

to produce a triple (topological space MxR f a certain compatible 

uniformity in MxR f 1-foliation L ) such that most of the quali­

tative properties of f may be studied using this triple# All we ha­

ve to do is to define a compatible uniformity in M x R # Define 

f : M x R - * M x R by the following formula: 

f(x,t) - (f(x), t-1), xfiM, t ЄR 

Lemma 3«1« There exists a weakest compatible uniformity tL f on 

MxR such that f generates a uniformly equicontinuous group re la-
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tive to %t 

-,00 
Sketch of the proof. MxR/{ z » f(z)} is a compact C -manifold 

Mff and the natural projection MxR -*> Mf is a (smooth) covering. 

The only compatible uniformity in Mf can be naturally lifted UP to 

MxR to produce the desired uniformity V/^ • 

Remarks We can easily see that %t is determined by a certain <f* 
Riemarmian metric on M x R # 

Later the pair (M x Rf U-p) will be abbreviated to Mf and the 

triple (Mx Rf Uf,L) to the pair (MffLf)# Mf will be called a 

non-autonomous suspension over f • 

Definition 3.2. ff geDiff
1 (M) are called <T-equivalent iff there 

exists an equimorphism <p : M^ -* M such that ^(L^) « L # 

This definition is motivated by the following trivial 

Proposition 3.3. Two leaves L(x)f L(y)£Lf such that L(x)9(xf0)f 

L(y) * (y>0), are in proximity relative to %t iff the same holds. 

for the orbits of x and y under f relative to the only compa­

tible uniformity on M # 

Classification of Hon-Autonomous Suspensions. Now it seems 

quite natural to suggest the following 

Problem: When are Mf and M f ffg Diff1(M) f equimorphic? This 

problem may be considered as directly related to those of the first 

section of this paper, but we have described above its relation to 

dynamics# 

To illustrate the problem, let us consider some 

Examples. 1) Let M • Sn be an n-dimensional sphere* Since the 

group Homeo (Sn) consists of only two-path connection components, 

every f€Diff1(M) gives a non-autonomous suspension equimorphic to 

Snx R # 
2) Let M be an arbitrary smooth compact manifold, and let f ge­

nerate an equicontinuous group of homeomorphisms of M # Then ML, 
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is equimorphic to M x R • 

Remarks: a) It is easy to prove that f e Diff*(M) is ̂ -equivalent 
to id-y- iff f generates an equicontinuous group* 
b) The previous remark is of special interest when compared to 
Theorem 2#17* 

2 
3) Let M » T be a 2-torusf

 fo,:Clff2,f3 its linear diffeomorp-
hisms corresponding to matrices: 

(o J' (o i)' (i i)> (i i) • 

M f will be abbreviated here to M. * To distinguish M. neither 
uniform homology [3,4] nor the volume invariant [l] are sufficient* 
Using the ideas of [2] one may check, however, that M4 is not equ-
imorphic to M., i « 0flf j • 2f3 • But this is not sufficient to 
distinguish MQ

 from *i and M2 from M 3 # 

Uniform Homotopy Type of Non-Autonomous Suspensions* Luckily, 
uniform homotopy type of non-autonomous suspensions over diffeomoiv 
phisms can be studied in rather an explicit way (see [l9f20] ) # 

Theorem 3*4f
 HftM» have the same u*h*t* iff there exist nf m£Z\£p}7 

if i M -* M a homotopy equivalence « such that f « if and gno <f 
are homo topic* 

The proof will be outlined below; first we shall list some corolla­
ries. 

Corollary 3*5* If Mf is equimorphic to M x R , then there exists 
a k€ Z\[0} such that f is homotopic to the identity map* 

Corollary 3.6. If feDiff1(M) is Anosov (see [2l] ) f then M f is 
not equimorphic to M x R # 

This corollary is implied by the previous one and the following 
important 

Theorem 3*7* No Anosov diffeomorphism of a compact manifold is homo-
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topic to the identity map. 

The proof of this theorem belongs completely to algebraic topo­
logy and is therefore omitted here# 

Corollary 3.8- Let M • Ts be an s-torusf f,g£GL(s,Z) its linear 
diffeomorphisms. Then T f and Ts are equimorphic iff there exist 
n fm€Z\{0} and h€ GL (sfZ) such that h ^ f " - fifth. 

To prove this corollary one should apply Theorem 3#4 and consi­
der the natural action of f fgf cf in the fundamental group of M #. 
Notice, that this corollary implies the non-existence of an equimor-
phism between M i and M. f It j f described above in Example 1# 

The purely algebraic problem, involved now with the uniform 
classification of non-autonomous suspensions over linear diffeomorp­
hisms of tori, seems rather difficult, and we do not know the complete 
solution even for s • 2! 

Corollary 3.8 may be easily generalized to the algebraic diffe­
omorphisms of infra-nilmanifolds (see [22] ) # Thus the problem of 
uniform classification of non-autonomous suspensions over all Anosov 
diffeomorphisms, known to uaf is reduced to a purely algebraic prob­
lem (cf#[23j). 

Sketch of the Proof of Theorem 3«4. The proof of Theorem 3*4 is 
based upon two propositions listed below. 

Lemma 3.9. Let K be a compactumf N a Riemannian manifold, A an 
arbitrary infinite set of indices, {f^ : K - * N | O C C A } a precompact 
set in C(K,N) (relative to the usual topology). Then there exists 
oc*€ A such that for an infinite subset B e A f # and f, are 
homo topic whenever /3 £ B # 

This is quite obvious^but implies some interesting corollaries, 
e.g. 

Corollary 3.10. Let M be a compact Riemannian manifold, and let 
f € H0meo(M) generate an equicont. 
to idjy- for some integer k £ 0# 

f € H0meo(M) generate an equicontinuous group. Then f is homotopic 

Lemma 3*11* Let f ,g€ Diff^M) , 0 : M f -* Mg be a uniform homo-
topy (u.h.) equivalence, MQ • Mx {0} c M f # Then there exists a 
sequence of integers l(k) such that 
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a) t o £ o * v :M-^M is a precompact set of mappings, 
o ^ 

k€Z ; b) there exists Lil such that IT1 -*| l(k)/k I £ L # 
To prove this lemma one should use the properties of u#h# equi­

valences of g#s# described in [9] ; these properties imply that l(k) 

may be defined by the formula (M x [t} c M ): 
© 

l(k) » - entier (inf {t | M x {t}f\ $ o fk(MQ) j* 0 } ) # 

As far as the necessity of its conditions is concerned. Theorem 

3#4 is obviously implied by the two lemmas above# Sufficiency is ob­

vious • 

i.1 oining Results# These concern mainly necessary conditions for 

two diffeomorphisms to be ^-equivalent* We shall mention two theo­

rems to illustrate this approach* 

Theorem 3.12. Let ffgeDiff
1(M)fand let f and g be/"-equivalent; if 

topological enthropy of f is 0 f then the same holds for g # 

Theorem 3#13# Under the assumptions of the above theorem there exist 

integers mfn i* 0 and <f €Homeo (M) such that if"1© g~n©ifofm be­

longs to the path connection component of idM in Homeo (M)# 

We hope to achieve further results in this direction involving 

structural stability of wider classes of time dependent diffeomorphi­

sms and vector fields. 
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