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FOURTH WINTER SCHOOL (1976)

ERVIRONMENTALLY CONDITIONED SELF-REPRODUCTICH

by
Pety “XDERA

In the paper we consider a model describing some fea-
tures of relationship between biological organisms and
their environment. We suppose the organism and its envi-
ronment are made from the same stuff, The stuff consists
of various elements with different properties. The ele-
ments may be grouped into assemblies, and these assemblies,
when in contact,may act om each other, this action being
determined by the elements ixrvolved_a:nd ways, they are
grouped together. Given a sufficient quantity of elsments,
they may be put together in a great many ways, and it is
probable that some of these assemblies have quite remark-
able properties, e.g. self-reproduction.

In mthematical formalization, elements are characters of
am alphabet ( (containing all capital letters, digits, and
some special symbols), assemblies are words of (', and the
relation "to be in contact® .is rea;l.ized by an antireflexive
relation., So far we have a system (X,R,{) where
X is a finite set of vertices, -

REXxX is an antireflextive relation, s
2: X—> Q* is a function ( Q* is the set of all words of

).
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The way the words interact is gjren- by a programing langu-
age. An instruction written in this reproductive langusge
may somehow rearrange its closest neighborhood, &and a se~-
quence of such imstructions msy act on its environment in
quite a complicated way. There are follosing types of in=-
structioms: . ’
1. TAKE instruction written in a word .£(x) causes that a
certain fim1l i:art of some ward £ (y) where (x,y)eR is
taken and appended behind A£(x).
2. GIVE instruction written in a word £ (x) causes that a
certain fim1 part of .2 (x) is taken and appended be-
hind some word A2 (y) where (x,y) €R.

3. MOVE instruction written in a word .£(x) causes that so-
me edge (x,y)€ R is erased fron; R and some new edge (x,2)
origimte, mrovided (y,z)eR

4. GOTO instructiom (conditiomed or urnconditionsd) enables
branchinmg in the sequence of instructions. Conditions al-
low ingquiries into the structure of environment.

5. ASSIGN instruction causes that en arithmetical ‘variable
takes a given value., The variasble s are uséd as parameters
of other instructions. -

In arder that A word may distinguish between its neighbor-

ing words, all edges sourcing from a given vertex are numbe-

.red’com ecutirely. This is dore by a mumbering functiom r:

: R—>c where c is a set of all integers and r has

the follaring properties:




a4y

1. .V(x,y)e B rix,y)zl _

2, r(x,y) =rix,z)e=dy =32 _ (1)

3. r(x,y)>1=> (33X ((x,2)eR & rix,z) ¢+ 1 = r(x,7))
If we have a graph inhabited by words of b , some. of them
being programs in our reproductive languags, we would like
that all these prograﬁs were carriéd ow concurrently. How~
ever, the result would not be deterministic and therefore
we adopt the following convgntiona: '

There is given an integer k, a starting vertex x & X md a
successor nmcf;ion 8: X—»X such that 8% (x)ee x for m} )
x €X aend any n-<card (X)'. @)

- We imagine, there is a compiler that changes tixe grdph as
follaws.

Birst itcarries out k instructioms of £ (x ), then k in-
structions o L (s(x,)) etc. If a word contains no instruc-
tion, the compiler ignores it and goes to next vertex. Ha-
ving run through all vex;ticeé x€X, the coﬁpilcr returns to
x, and goes on where it has interrupted. Throughout such
computation, the' compiler must remember two partial func-
tioms i: X —> @ ,», v: XxVar «~>» o tvhere Var is the set
of all variables. The function i specifies tho eddress of
interruptionm; for any x¢X the program .£(x) was interrup-
ted at i(x)-th character, v(x,y) specifies the value of va=-
riable y at vertex x. . .

The idea of these graphs changing in discrete timp steps is
taken from [1]. In fact our syetem is a very special case of
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systems cors idered there,

Definition

A biosystem is a system B = (X,£,R,r,x ,8), vhere X is 2
finite set of vertices

L : X -—3 Q' is & labeling function,

RE X« X is an antireflextive relation,

*: R~—>» @ is a numbering function with ovroperties (1)
x,€ X is a starting vertex, and

8: ¥Y=—3-X is a successor function with properties (2)

A computational state of a biosystem is a system

€ = (X,£,R,r,x,,8,i,v,k ), where (X,£,R,r,x ,8) is a bio-~
system,

i: X —>» & |, v: X&Var —>» @ are partial functions,

Var is the set of all variables and ko is an integer.

Definition

For any integer k=1 an operator Sk acting on computational
states is defined as follows:

Ir €= (xX,2 »ByT,X,8,1,v,k ) is a computational state,
then S, (€) = (x,&',R',r',x;,s,i',v',k;) where £°,R’,r’,v
‘are obtained by carrying out the imstruction of £ (xo) on

2

address i(x ),
i’(x,) is the address of next instruction, i’(y) = i(y) for
o _ S . o _
y*X, ko.-ko'l- 1andx°=x° :er°<kandk° = 1 and
. .
x, = s(x,)) if qu» k.
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Definition
The initial computational state of a biosystem - f is N
= (X, l,R,r,xo,s,io,vo,l-), vhere v is everywhere undefined,
and i (x) is address of first instruction in £(x) or unde-

fined if there is no such instruction.

Definition
let J3 be a biosystem, k an integer. We say that the word at
x € X reproduces itself in J3 and S, if there is an integer n
with SE(B) = (X, £),R),ry,X,,8,i,,7,,k,)

SL”]'(@O) = (X, £5,Ry,T5,X5,8,1i5,75,k;) and y €X with
L(x) = £,(x) =2,(y), 2£,(x) =2£(x) 2(x), £,(3) = A ,
A{x) £(x) being concatenation and A the empty word.

In the second part of the paper we consider special biosys-
tems in which all but one vertices of the underlying graph
are labeled by a single character or empty word. These bio-
systems model an organism situated in a nonliving environ-
ment., We are intere\sted in the development of this biosystem
till the point, the organism reproduces itself (if it repro-
duces at all). By introducting the concept of random environ-

ment, we may compute probabilities that a program reproduces
itselfo )

Definition
let P be any biosystem. A path (between x, and x, of
length n) is any sequence XyyXpyeXy of vertices such that

(Vi<n)(xi,xi+1)e R -

Definition
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let P € Q* be axv program, a,,a,,83 reals with 2,>0, ay=
Z0, a3>0 and 8y taytay=1 (such triples will be called

types).
A random environment of P of type (al,a2,83) is a random

variable whose values are biosystems B = (X, £,R,r,x,s)
such that v .
1. A2i(x)) =P, for any yeX y+x,=> L)€ Quinrg
and for any o« &€ Lu {A3 prob [ L(y) =e) = L/A, where A =
= card ia.) +1 .

2, There is exactly one ye X with (x,,y)€ R, for any two
vertices there is at most one path between them, for any
yeX y#x, = prob [there are exactly i - 1 edges sour-
cing fromyJ=a; (ay = O for i>3)

3. all these probabilities are independent.

Definition .
For any type (:1,52,&3) the reproductive probability p of a
program P is the probability that P reproduces itself in a

random environment o type (31,32,33).

Definition

For any program P, its depth is the least integer k such
that P inspects only such vertices y¢X that there is a
path of length at most k betweer x_ and y. (The depth of P
may be d eciphered from its syntax.)

Theoren _
For eny type (al,az,a3) and eny integer xZ2 there is a po-
sitive real number qk<1 such that the reproductive proba-
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bility of any program of depth k and length n is less or

equal to qﬁ’k .

Consequence

For any type (81132'33) and any integer k, the s;at of repro-
ductive probabilities of all programs of depth k has = maxi~
mal element (denoted mk).

Programs with greater depth have greater length, and we do
not know yet: whether their reproductive probabilities tend
to 1 owing to increase in gy or to O owing to increase in

length. This questiom is answered by next theorem.

Definition
For a given type (al,aa,a3) let T = prob { in a random envi-

ronment of type (ay,85,83) there is no path of length k J.

There isr1=0andrk+1=a1+a2rk+a3r§andlim Ty =
= min (1,&1/33).' Surely, if P has length n then its reproduc-

tive probability p£1 - T,

.

Theorem '
There is a sequence of .programs Pk of depth kX such that for
ary type (al,az,a3), if p, is the reproductive probability
of Pk then '

k]-inéo Pp=1- ‘E’mw re = max (0,1 - 31/33)
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COnsequemé ) )
The set 'h‘ék'z? has a maximal elememt if and only if there

is X22 with m Z max (0,1 ~ &;/a;)

In the last part of the paper we,_c,onéider {(without any mat-
. hematical treatment) bioay'stemg with two or mare “living"
programs., An example of program that purposefully competes
with its neighbours, is exhibited,
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