USA 4

Per Kůrka

Environmentally conditioned self-reproduction

In: Zdeněk Frolík (ed.): Abstracta. 4th Winter School on Abstract Analysis. Czechoslovak Academy of Sciences, Praha, 1976. pp. 15--22.

Persistent URL: http://dml.cz/dmlcz/701037

Terms of use:

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, 1976

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

FOURTH UINTERR SGAOOL (1976)

ERTVIRONMENTAITY CONDITIONED SKLP-BEPRODUCIIOS

In the paper we consider a model describing some features of relationship between biological organiems and their environment. Me suppose the organism and its environment are made from the same stuff. The stuff consists of various elements with different properties. The elements may be grouped into assemblies, and these assemblies, when in contact, may act on each other, this action being determined by the elements involved and ways, they are grouped together. Given a sufficient quantity of ele ments, they may be put together in a great many ways, and it is probable that some of these assemblies have quite remarkable properties, e.g. self-reproduction.

In mathematical formalization, elements are characters of an alphabet Q (cóntaining all capital letters, digits, and some special symbols), assemblies are words of a, and the relation "to be in contact" is realized by an antireflecive relation. So far we have a system (X, R, \mathcal{Z}) where X is a finite set of vertices, $R \subseteq X \times X$ is an antireflextive relation,
$\ell: X \rightarrow a^{*}$ is a function $\left(a^{*}\right.$ is the set of all rords of a).

The way the words interact is giren by a programing language. An instruction written in this reproductive language may somehow rearrange its closest neighborhood, and a sequence of such iss tructions may act on its environment in quit a complicated way. There are following types of instructions:

1. TAKE instruction written in a word $\boldsymbol{\ell}(x)$ causes that a certain firal part of some ward $\ell(y)$ where $(x, y) \in R$ is taken and appended behind $\boldsymbol{L}(\mathrm{x})$.
2. GIVE instruction written in a vord $\boldsymbol{f}(x)$ causes thet a certain firal part of $\ell(x)$ is taken and appended behind some word $\quad \&(y)$ where $(x, y) \in R$.
3. MOVE instruction written in a word $f(x)$ causes that some edge $(x, y) \in R$ is erased f rom F and some new edge (x, z) origirate, povided $(y, z) \in R$
4. GOTO instruction (conditioned or unconditioned) enable s branchimg in the sequence of instructions. Conditions alLow inquiries into the structure of environment.
5. ASSIGI instruction causes that an arithmetical rariable takes a given value. The variable s are vaed as parameters of other instructions.

In crder that a word may distinguish between its neighboring words, all edges sourcing from a given vertex are numbered cors ecutirely. This is done by a mombering function r : $: R \rightarrow \omega$ where ω is a set of all integers and \mathbf{r} has the following properties:

1. $\forall(x, y) \in R \quad r(x, y) \geq 1$
2. $r(x, y)=r(x, z) \Longrightarrow y=2$
3. $r(x, y)>1 \Rightarrow(\exists z \in X)((x, z) \in R \& r(x, z)+1=r(x, y))$ If we have a graph inhabited by words of a, some of them being programs in our reproductive language, wo would like that all these programs were carried out concurrently. However, the result would not be deterministic and therefore we adopt the following convention:

There is given an integer k, a starting vertex $x_{0} \in I$ and a successor function s: $X \longrightarrow X$ such that $s^{n}(x) * x$ for $x \in X$ and any $X<c a r d$ (X).
We imagine, there is a compiler that chonges the graph as follows.

Eirst itcarries out k instructions of $\mathcal{L}\left(x_{0}\right)$, then k instructions of $l\left(s\left(x_{0}\right)\right)$ etc. If a word contains no instruction, the compiler ignores it and goes to next vertex. Having run through all vertices $x \in X$, the compiler returns to x_{0} and goes on where it has irterrupted. Throughout such computation, the compiler must remember two partial functions i: $\mathbf{X} \longrightarrow \omega, \nabla: X \times V a r \longrightarrow \omega$ there Var fis the set of all variables. The function i specifies the eddress of interruption; for any $x \in X$ the program $l(x)$ was interrupted at $i(x)$-th character, $\nabla(x, y)$ specifies the value of variable J at vertex. x.
The idea of these graphs changing in discrete timp steps is taken from [1]. In fact our system is a very special case of
systems cons idered there.

Definition
A biosystem is a system $B=\left(X, \mathcal{L}, R, r, X_{0}, s\right)$, were X is a finite set of vertices
$\mathbb{A}: X \longrightarrow a^{*}$ is a labeling function,
$R \subseteq X \times X$ is an antireflextive relation,
$r: R \longrightarrow \omega$ is a numbering function with oroperties (1)
$x_{0} \in X$ is a starting vertex, and
s: $X \rightarrow X$ is a successor function with properties

A computational state of a biosystem is a system $\mathcal{C}=\left(X, \ell, R, r, x_{0}, s, i, \nabla, k_{0}\right)$, where $\left(X, \ell, R, r, x_{0}, s\right)$ is a bio= system,
$i: X \longrightarrow \omega, \boldsymbol{X} \rightarrow \mathbf{X} \times V a r \longrightarrow \omega$ are partial functions, Var is the set of all variables and k_{0} is an integer.

Definition

For any integer $k \geq 1$ an operator S_{k} acting on c omputational states is defined as follows:

If $\mathscr{C}=\left(X, \ell, R, r, x_{0}, s, i, v, k_{0}\right)$ is a computational state, then $S_{k}(\mathscr{C})=\left(X, \mathcal{l}^{\prime}, R^{\prime}, r^{0}, x_{0}^{0}, s, i^{\prime}, \nabla^{\prime}, k_{0}^{\prime}\right)$ where $\ell^{\prime}, R^{\prime}, r^{\prime}, v^{\prime}$ are obtained by carrying out the instruction of $\boldsymbol{l}\left(x_{0}\right)$ on address $i\left(x_{0}\right)$,
$i^{\prime}\left(x_{0}\right)$ is the address of next instruction, $i^{\prime \prime}(y)=i(y)$ for $y \neq x, k_{0}^{\prime}=k_{0}+1$ and $x_{0}^{\prime}=x_{0}$ if $k_{0}<k$ and $k_{0}^{\prime}=1$ and $x_{0}^{\prime}=g\left(x_{0}\right)$ if $k_{0} \approx k_{\text {. }}$

Definition
The initial computational state of a biosystem B is i $=\left(X, \ell, R, r, x_{0}, s, i_{0}, \nabla_{0}, l\right)$, where v_{0} is everywhere undefined, and $i_{o}(x)$ is address of first instruction in $\ell(x)$ or undefined if there is no such instruction.

Definition

Let B be a biosystem, k an integer. We say that the word at $x \in X$ reproduces itself in \mathcal{B} and S_{k} if there is an integer n with $S_{k}^{n}\left(\beta_{0}\right)=\left(x, \ell_{1}, R_{1}, r_{1}, x_{1}, s, i_{1}, v_{1}, k_{1}\right)$
$S_{k}^{n+1}\left(\mathcal{B}_{0}\right)^{\prime}=\left(X, l_{2}, R_{2}, r_{2}, x_{2}, s, i_{2}, \nabla_{2}, k_{2}\right)$ and $J \in X$ with
$\ell(x)=\ell_{2}(x)=\ell_{2}(y), \ell_{1}(x)=\ell(x) \ell(x), \ell_{1}(y)=\Lambda$, $\ell(x) \ell(x)$ being concatenation and A the empty word.

In the second part of the paper we consider special biosystems in which all but one vertices of the underlying graph are labeled by a single character or empty word. These biosystems model an organism situated in a nonliving environment. We are interested in the development of this biosystem till the point, the organism reproduces itself (if it reproduces at all). By introducting the concept of random environment, we may compute probabilities that a program reproduces itself.

Definition

Let \mathcal{B} be any biosystem. A path (between x_{1} and x_{n} of length n) is any sequence $x_{1}, x_{2}, \cdot x_{n}$ of vertices such that $(\forall i<n)\left(x_{i}, x_{i+1}\right) \in R$

Let $P \in a *$ be any program, a_{1}, a_{2}, a_{3} reals with $a_{1}>0, a_{2} \geq$ $\geq 0, a_{3}>0$ and $a_{1}+a_{2}+a_{3}=1$ (suck triples will be called types),
A random enviroment of P of type $\left(a_{1}, a_{2}, a_{3}\right)$ is a random variable whose ralues are biosystems $B=\left(X, l, R, r, x_{0}, s\right)$ such that

1. $l\left(x_{0}\right)=P$ for any yeX $y \neq x_{0} \Rightarrow l(y) \in a \cup\{\wedge\}$ and for any $\propto \in a_{u} \cup\{A\} \operatorname{prob}[\mathcal{L}(y)=\infty]=1 / A$, where $\mathbb{A}=$ $=\operatorname{card}(a)+1$
2. There is exactly one $y \in X$ with $\left(x_{0}, y\right) \in R$, for any two vertices there is at most one path between them, for any $y \in X \quad J \neq x_{0} \Rightarrow$ prob [there are exactly i - 1 edges sourcing from $y]=a_{i} \quad\left(a_{i} \neq 0\right.$ for $\left.i>3\right)$
3. all these probabilities are independent.

Definition

For any type (a_{1}, a_{2}, a_{3}) the reproductive probability p of a program P is the probability that P reproduces itself in a random environment of type (a_{1}, a_{2}, a_{3}).

Definition
For any progrem P, its depth is the least integer k such that P inspects only such vertices $y \in X$ that there is a path of length at most k between x_{0} and y. (The depth of P may be deciphered from its syntax.)

Theorem
For any type (a_{1}, a_{2}, a_{3}) and any integer $k \geq 2$ there is a positive real number $q_{k}<1$ such that the reproductire proba-
bility of any program of depth k and length n is less or equal to q_{k}^{n-k}.

Consequence
For any type $\left(a_{1}, a_{2}, a_{3}\right)$ and any integer k, the set of reproductive probabilities of all programs of depth \mathbf{k} has maximal element (denoted m_{k}).

Programs with greater depth have greater length, and we do not know yet whether their reproductive probabilities tend to 1 owing to increase in $\mathbf{q}_{\mathbf{k}}$ or to 0 owing to increase in length. This questior is answered by next theorem.

Definition
For a given type $\left(a_{1}, a_{2}, a_{3}\right)$ let $r_{k}=$ prob $[$ in a random environment of type $\left(a_{1}, a_{2}, a_{3}\right)$ there is no path of length k].

There is $r_{1}=0$ and $r_{k+1}=a_{1}+a_{2} r_{k}+a_{3} r_{k}^{2}$ and Iim $r_{k}=$ $=\min \left(1, a_{1} / a_{3}\right):$ Surely, if P has length n then its reproductive probability $p \in 1-r_{n}$

The orem

There is a sequence of programs P_{k} of depth k such that for ary type $\left(a_{1}, a_{2}, a_{3}\right)$, if p_{k} is the reproductive probability of P_{k} then

$$
\lim _{k \rightarrow \infty} p_{k}=1-\lim _{k \rightarrow \infty} r_{k}=\max \left(0,1-a_{1} / a_{3}\right)
$$

22

Consequence

The set $\left\{m_{1}\right\} y_{z}$ has a maximal element if and only if there is $k \geq 2$ with $m_{K} \geq \max \left(0,1-a_{1} / a_{3}\right)$

In the last part of the paper we consider (without any mathematical treatment) biosystems with two or mare "living" programs. An example of program that purposefully competes with its neighbours, is exhibited.
References
[1] V. Rajlich Dynamics of discrete systems and pattern reproduction, JCSS Vol 11,No 2, October 1975, pp 186. 202

