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Pifth winter school

A note on the gohexistence of the Feynman integral
Milo8 Zahradnik

There is the following well known difficulty in the theary
of Feynmen integral: no measure can be related on R<° N
to the formal expression e § =’ )1’ dtoZ) (x), ‘contrary
to the case when the formal expreesion e—§ L=’ (tﬂ dt (x)
leads to the well defined Wiener measure.

This was first pointed out by Gelfand and Cemeron,

The same difficulty arises in the case of the operator va;
lued Féynman integral, introduced by Cameron and Storvick.
Definition. A dynamical system T = {mg » 028%t=1} on
®P (z, () 18 a family of bounded operators on 1P eatis-
fying

(1 mBortar

. : ’ T: = jdentity

(2) Té') ’ 'r'f_) are Borel measurable operatorvalued fun-
ctions,
For any dynamical system T we can construct the "dynamical

: —> _

operatorvalued Feynman integral®” Moo defined for each
<

0= toétlé eese=t, = 1 and each rectangle

A . A x Al X eee X An c x{to 't4 ..o-tm} x<o,1>
o .

—_—
% $4
with A, Borel by  Aln(a) = I‘no T :10 eon Tglody

where IA denotes the operator of multiplying by IA:I. .
i

Examples: 1) The "Feynman" dynamical system defined by the
gsemigroup of operators on LZ(R) related to the Schrodinger
egquation —i)— vy =1iA Y -U.Q
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2) The "Wiener"™ dynamical system, related to the equa;
tion i -5\—; p o= A ¥
It is the aim of this note to investigate the guestion,
when ((_7.! extents to a vector measure (with values in
L (zP, LP) - the space of bounded operators on LP),
The resnlis are the following:
Definition 1. Let T < (LP,LP). Consider LP with its natural

norm end lattice structure.
If y 20, put 1T v = sup T {m Y |
29, %Y
0= Yy
iff it exists in LP, For anarbitrary ¥ € Lp, put
\T1 ¢ = 12ly"= |2l ¢~  whenever it is defined.
Clearly T is a linear operator (the absolute value of T).
As it will be shown, it often happens that O( \T| = {0} ).
Theorem 1, Consider the gpace L (Lp, Lp) with its strong
operator topology. If T € L (LP, IP), define gfm (the
“operator integral™ on X x X) on Borel rectangles by
R (ij (A xB) =IgoT°I, .
Then (u‘!l‘ can be extended to a vector measure on Borel subsets
of XxX iff |T| 1is a bounded operator.
Moreover, then there is a Borel measurable function .G with
l@l =1 sueh that‘_> >
Mop =@ Mo -
Now we give the extension of Theorem 1 for dynamical systems:

" Definition 2. Let T be & dynamical systenm.

Let each \T:i be bounded and let for each s < ¢

im\:n\o o\T§4 |, 8<t,% .., é_tnét} be bounded in L (1?,1P).
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We can define

| :‘ = sup\Tg | © v zl Tt‘ [ §y for each Y= 0,
It can be cheched that AR A { \ z }; ~(the absolute
value of T) is a dynamicgl gystem,

Consider also the "trancated dynamical.» systems" :‘1‘
. . , .
defined by: :T:, = Tz, whenever s',t'<s and s8',t'=t ,

tTt. = Id whenever 8<s8, t>1:.

Now, the main result sayss

Theorem 2, All dynamical integrals /—HT ‘ extend fo

a vector measure on Borel subsets of fO v e P! exists.
Moreover, then there ia a Borel measurablo function G on
xOD witn (6l = 1. snch that g = G /*m .

- Exampleg., Let T be an operator on LP (m) (m=Lebesgue)
measure invariant with respect to shipts.

Then |T| exists 1ff T can be eipressed by a ccnﬁolution '
with a finite measure, ,

FIf T = {.T:% is a dynamicaly system defined by a semigroup,
invariant with respect to shifts, then if \?| exists, then
each |T| g can be expressed by a convolution with e“’t.gl«t
where . is an infinite divisible probability.

Thus we see the striking difference between the Wiener and

Feynman dynamical system.
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