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11.9 

Fifth winter school 

A note on the nonexistence of the Feynman integral 

Milos Zahradnfk 

There is the following well known difficalty in the theory 

of Feynman integral: no measore can be related on R^0**' 

to the formal expression e*s *-x vt)J dt ̂  ^ x^ contrary 

to the case when the formal expression e s Lx WJ ^06 (x) 

leads to the well defined Wiener measore. 

This was first pointed oat by Gelfand and Cameron* 

The same diff icalty arises in the case of the operator va

lued Feynman integral, introduced by Cameron and Storvick. 

Definition. A dynamical system T » -f T* f 0£e-£t~lj on 

Jp (Xf M.) is a family of boonded operators on X p satis

fying 

(1) T| O Tj - fJ , T* « identity 

(2) T^' , T/N are Borel aeasarable operatorvalaed fan-

ctions. 

For any dynamical system T we can constract the "dynamical 

operatorvalaed Feynman integral" ^ ^ » defined for each 

0 « t ^ t-,̂  •••-t„ • 1 and each rectangle o 1 n , 

A m A 0 x A 1 x ... x A B c X ^ o » V »•••*"-3 X4>,1> 

with A, Borel by /^mU) - I* ° ?t* ° ••• Tt*oIA 

where I* denotes the operator of maltiplying by 3C A . Ai i 

Examples: 1) The "Feynman" dynamical system defined by the 

semigroap of operators on I* (R) related to the Schr©dinger 

eqttation -4 M> » i A ^ - U - ^ 
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2) The "Wiener1* dynamical system, related to the equa-

tion -~- y> » A f 

It is the aim of this note to investigate the question, 

when /Uy extents to a vector measure (with valaes in 

L ClPf iP) - the space of bounded operators on L p)* 

The results are the following: 

Definition 1. Let T € (Lp
fL

p). Consider Lp with its natural 

norm and lattice structure. 

I f Vj> > 0 f p u t \T\ <f m SUP 51 \ * ^vs I 

iff it exists in Lp. lor anarbitrary «j» £ Lp
f pat 

If | y m \ T\ u>+~ \T\ j ~ whenever it is defined. 

Clearly T is a linear operator (the absolute Yalue of T). 

As it will be shown, it often happens that 6&( \T\ « ^o} ). 

Theorem 1. Consider the space L (Lpf L
p) with its strong 

operator topology. If T 6. L (Lpf L
p ) f define ^^ (the 

"operator integral" on X x X) on Borel rectangles by 

<Xc T (A x B) m I B ° T « I A • 

Then M-m can be extended to a vector measure on Borel subsets 

of X x X iff IT I is a bounded operator* 

Moreover, then there is a Borel measurable function G with 

I G1 s i such that 

^T m Q <T%1 • 
low we give the extension of Theorem 1 for dynamical systems: 

Definition 2. Let T be a dynamical system. 

Let each 1 T M be bounded and let for each s -̂ -1 

{IT* \O ... o\T*«lf s^t 1^...^t n-^t} be bounded in L (L
P,LP)« 

n 
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We can define 

iTl *• .m sap I T* To .„# o | T*\| «y for each J e 0. 

It can be cheched that \ T \ **» -f\Tt * ]r (the absolute 

value of T) is a dynamical system. 

Consider also the "truncated dynamical systems" *T 

t t' t' 
defined by: ^T^, « T*, whenever ft'ft'*a and 8',t'at , 

t t' / 
gTg, m Id whenever s £ s, t -^t. 

Now, the main result says: 

Theorem 2. All dynamical integrals <^t*T>- extend to 

a vector measare on Borel subsets of Jr* iff iTl exists. 

Moreover, then there is a Borel measurable function G on 
X<°f-0 w i t i l ( G | . X 0 Q c h t h a t ^ ^ a Q# ^ r j , ( . 

Examples. Let T be an operator on iP (m) (m-Lebesgue) 

measare invariant with respect to shipts. 

Then ITl exists iff T can be expressed by a convolation 

with a finite measure. 

If T « T r v is a dynamical system defined by a semigroup, 

invariant with respect to shifts, then if \Tl exists, then 

each I TI * can be expressed by a convolution with e m^M^ 

where <Xw is an infinite divisible probability. 

Thus we see the striking difference between the Wiener and 

Feynman dynamical system. 
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