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Seventh Winter School on Abstract Analysis 1979 

SIFTING INFINITE - DIMENSIONAL COMPACTA BY 

THE LUSIN SIEVE 

R. Pol, Warszawa 

1. By a compactum we shall understand a compact metrizab-

le space. Recall that a compactum X is countably dimensional 

if X is the union of countably many zero dimensional subsets 

and X is weakly infinite dimensional, if for each infinite 

sequence (A1,B1), (A2,B2),... of pairs of disjoint closed 

sets in X there are partitions L. in X between A. and 

3± such that ii L± = 0 (see [A-P] or [ri] ). B, 
i 

The class of countably dimensional compacta is contained 

in the class of weakly infinite dimensional compacta, while 

the question whether the inverse inclusion holds is the well 

known problem of Aleksandrov. 

Compacta which are not weakly infinite dimensional we 

shall call strongly infinite dimensional. 

Countably dimensional compacta can be classified inducti­

vely as follows: let Ind X - c{ if for each pair of disjoint 

closed sets in X there is a partition L separating these 

sets such that Ind L < d and let Ind X be the least o( 

with Ind X 5. a ; such an o( exists if and only if X is coun­

tably dimensional and then C* < CtT^ . 

2. Let X be a compactum. Call a sequence i/ ={(A1,B1), 

(A2#B2),...} of pairs of disjoint closed sets in X a basic 
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sequence if for each pair of disjoint closed sets (A,B) in X 

the inclusions AC A. and BCBjL hold simultaneously for in­

finitely many indices i . y 

Denote by Fin or* the set of all finite subsets of natu­

ral numbers -tf and let -< be the ordering of Fin uX inverse 

to the lexicographic ordering (i.e. $<% if for some n€OT 

we have 6T(i) « r(i) if i<n and S(n) « 1, *(n) - 0 ). 

Put 

M^ - { C G F i n 00 : if L± is a partition in X bet­

ween A. and B. f then II L. jf 0r . 
1 1 i€ff 1 

We have then 

(a) Mjf is well ordered by -< if and only if X is weakly in­

finite dimensional; 

(b) if X is weakly infinite dimensional, then the order type 

of M? does not depend on the choice of the basic sequen­

ce y . 

Having (b) in mind we define for a weakly infinite dimen­

sional compactum X : index X «- order type M^ , where y is 

a basic sequence in X • 

Note that if YC X , then index Y ^ index X . 

3. Denote by H the hyperspace of the Hilbert cube I** , 

i.e. H is the space of all compacta.in I w endowed with the 

Hausdorff metric. 

There exists a Lusin sieve W consisting of closed sub­

sets of H (see [K]), defined in a natural way by means of a 

basic sequence in I w , such that 

(a) the set L(W) sifted by the sieve W is exactly the set 

of all strongly Infinite dimensional compacta in I0* ; 
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( X € H L(W) then the Lusin index of X i\ith resp ct 

t _ ( e LKJ ) c o i ncid s vith the topological in r 

1 de X 

I an e a^ily v c n £ i th t for very o( < Uj* 

t { € H Ind X^crt} IS analytic and since the Lusin n 

is bounded on analytic sets we have 

sup { index X : Ind X 5. cX } < UT1 for c< < (0 ± . 

Question 1. Is it true that Ind is bounded on each set of 

countably dimensional compacta with bounded index? 

If not, Aleksandrov's problem has the negative solution, 

as we have 

Theorem 1. For a family F of weakly infinite dimensional com­

pacta the following conditions are equivalent: 

(i) there exists a weakly infinite dimensional compactum con­

taining topologically each compactum from £ ; 

(ii) sup { index X : XG F } < U) x . 

Another consequence of the boundedness of the Lusin index 

on analytic sets is 

Theorem 2. Let JF be an upper semi-continuous decomposition 

of an arbitrary compactum X into weakly infinite dimensional 

compacta. Then sup { index X : X€ F ) < U)« 

Question 2. Assume that £ above consists of countably dimen­

sional compacta. Is it true that sup { Ind X : X G F } < U)1 ? 

The negative answer would provide the negative ansv;cr to 

Question 1 and thus, ds we observed, the negative solu ion o 

Aleksandrov's problem. 

-1. In thi section vo shall a ply the noti n o 



a concrete situation, answering a question of D. Henderson 

raised in [Hj . 

Henderson defined, by the transfinite induction, "cubes" 

Hrf and their "boundaries" 9 H^ of order (X < IQ„ . If 

i< cO , then H. is the i-dimensional cube and ?H. is its 

boundary. Assume that for £ < o( we have defined H^ , 9H^. 

and points p* € IW* .If rf = £ + 1 put H 1 = H,xl , 

^ H 1 = (0 H,> I)U (Hg*{o,l}) (where I is the unit inter­

val) and p ., = (pfe ,0); if c\ is limit, let Ke be the 

union of H^ and a half open arc whose origin p^ is its on­

ly common point with H^ , let H^ be the one-point compacti-

fication of the free union of all K* for £ < o( , ^H^ -= 

= H^\ LJ (H c\ JJH^ ) and let p* be the compactifying 

|<* > > 

point. 

Henderson showed that H^ are AR-compacta and defined 

essential mappings into H^ extending the classical notion as 

follows: a continuous f : X—> H^ is essential provided that 

if g : X—-•H^ is a continuous map which coincides with f 

on the set f" ( ̂ H^ ), then g(X) = H^ . Henderson proved 

that if a countably dimensional compactum X admits an essen­

tial map onto H^ then Ind X-<X and asked, whether a com­

pactum which admits an essential map onto each compactum H^ 

is strongly infinite dimensional ? 

One can verify by the transfinite induction that if a 

weakly infinite dimensional compactum X admits an essential 

map onto H^ then index X-c< and this yields immediately 

(see sec. 1 (a)) the affirmative answer to the question of Hen­

derson. 
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5. Finally, let us mention a result which, although not 

»* 

related to the notion of index, has a proof based on the clas­

sical theory of analytic sets. 

Yu. Smirnov [sj defined by transfinite induction compac-

ta S1,S2,...,S£ ,..., £ < U)1 with Ind S^ = £ as follows: 

S1 is the unit interval I , S-+1 » S-*I and if £ is a li­

mit ordinal, then S* is the one-point compactification of the 

free union of all S* for fj < fc . 

Theorem. If a complete separable metrizable space X contains 

topologically all Smirnov's compacta, then X contains topolo-

gically the Hilbert cube. 

In particular, we have 

Corollary. If X is a complete separable metrizable space such 

that there is a continuous injection of the cone over X into 

X , then X contains topologically the Hilbert cube. 
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