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SEVENTH WINTER SCHOOL (1979) 

On the geometrical structure of Lebesgue nullsets 

Flemming Tops0e, Copenhagen. 

A complete description in geometrical terms of the 

class of Lebesgue nullsets is impossible. Of course, we 

have the definition in terms of coverings with balls 

but what we are after are local or pointwise characteri­

zations. We start with a simple result: 

2 
Theorem 1. Let Z be a subset of 1R , say. Assume 

that, for every x E Z , there exists a conesection with 

toppoint in x and disjoint from Z . Then IZI =0 . 

When we require that a conesection be disjoint with 

Z , we really mean that the interior be disjoint with Z . 

I-I denotes Lebesgue measure. 

Theorem 1 follows immediately from Lebesgues density 

theorem. However, as the density theorem is deduced from 

the Vitali theorem, v/e consider the Vitali theorem as the 

basic fact. Therefore, wc will show how Theorem 1 may be 

obtained from Vitali's theorem (in the form below, due to 

Banach, I think). 

Let A c ]R and let j be a system of closed balls 

in M . We define the homothetical Vitali system \J, 

by the requirement 
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(A , ^ ) G ^ h o m
 < = > V x G A 3°°>c>0 V5 3B = B [ y , r ] G J ! 

B c B [ x , ő ] , r > c • d ( ý , x ) . 

Theorem 2. (The classical Vitali theorem). 

(A ,$>) eVi "* 3 (BJ disjoint from ^ such that nom n •* 

l A s U BJ = 0 . 

Clearly, Theorem 2 implies Theorem 1 (put !P ={B closed ballI 

Bn z=j2)l). 

We shall now investigate what happens if the convex 

conesections are replaced by non-convex "conesections". 

Let n • -R+"* -tR. be monotone and assume that n(6) <6 V5 >0. 
N Rotating the n-curve around some half line in ]R emerging 

N from a point x € JR , and intersecting with a ball with 

center at x , we obtain what we shall call an n-section at x . 

Thus, if n is of the form n (6) =c • 6 , we get a cone. 

We define a class (*) of n~functions by the requirement 

^ . |.nu,\ dcS í1 tni«>У' 

Here, N is the dimension of the cuclidean space we are 

working in. We remark that 

«•••>-!- •?£?) 

N Thnorom 3. Let Z c ]R and let n € (*) be given. Assume 
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that, for every x G Z , there exists an n-section at 

x which is disjoint with Z . Then IZI =- 0 . ' 

To formulate the appropriate Vitali theorem for this 

result, we first introduce the relevant Vitali systems. 

For a fixed n_function , we define the screened Vitali 

system l/scrM by: 

(A , f) £ 1 T C r (n) ->Vx£A 36 o V6 < 6 Q 3 B = B [ y , r ] eft 

B c B [ x , б ] , r > n(6) 

Theorem 4. (A ,f) € W" (n) , n e (*) -»3 (Bn) disjoint 

cj 5 , |A^ U Bnl - 0. 

This result, as well as Theorem 3, is joint work with 

L. Mejlbro (Math. Ann. 1977)* The condition on n in both 

results is best possible. 

Clearly, Theorem 4 implies Theorem 3. 

N Let us reformulate Theorem 3: For Z c E , define 

the gap-function by 

n(őlx) = sup{d(y,Z) ld(y,x) < б); б > 0 , xЄ Ж N
. 

Theorem 3 says that if there exists n G (*) such that 

n(«lx) > n for all x G Z , then IZI = 0 . 

1 

In case Z c JR then the gap-function has an inter­

pretation as "sunshine functions" related to the function 

y --> d(y,Z) . 
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Consider the problem of finding a unified Vitali theorem 

for Lebesgue measure. In more detail, we search for a Vitali 

0a* N 

system (/ say , in IR , purely geometrical in nature, 

such that: 

(a) the Vitali theorem holds for U , i.e. 

(A ,f) € ?r* -=> 3 (Bn) disjoint e J P . l A ^ U B l - O , 

(b) 1} is of the pointwise type (i.e. not of the 

uniform type as the screened systems [J (n) bur rather 

of a type as the classical system l/^^) , 

(c) n e (*) -=> 1 / e n A n ) c V* , 

scr 

' hom 

,'n. C 11* . 
scr 

hom -

En passant, recall that there exists a unified Vitali 

N 
system which can handle "arbitrary" measures on IR , via the 

astounding theorem found independantly by Besicovitch and 

by A.P. Morse. This Vitali system is simply the system 

U Yi ^c > ̂ ) obtained from \J, by imposing the extra 

condition c > 1. Thus, one could hope that "all" density 

theorems, differentiation theorems, disintegration theorems 

N 
and the like in IR can be deduced from results about 

just two Vitali systems ( v. (c > 1) and 1} ) - and, 

of course, from theorems outside the scope of Vitali type 

theorems. 

But 1}* is not known. Here is a natural guess: Define 

* by 
scr J 1} 
se 

(A ,f) € 17* *> VxeA3ne(*)VÓ 3B=B[y,r]ef:BcB[x;ó];r>n(6) 
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Does ^* s c r work? Trivially, $* cr satisfies (b) 

and (c) . And by a little argument, 1} * is al'so seen to 

satisfy (d). But we have: 

Theorem 5. (M. Talagrand). v does not satisfy the 
^= * scr * * 

crucial condition (a), the Vitali theorem. 

We shall not describe the pertinent example here -

for one reason, the details are not yet properly collected. 

Instead, we shall later on give a somewhat weaker example. 

A study of a special case 

Let us simplify as much as possible without loosing 

the flavour of the problem. So we shall aim at geometric 

criteria for a set to be a Lebesque nullset, and leave 

the Vitali problem aside. Also, we consider a 1-dimensional 

space and assume that Z c [0,1] . Then the complement 

T = [0,1] ^Z 

is a disjoint union of open intervals. We shall assume 

that all these intervals are dyadic intervals. 

The usual identification of dyadic intervals with 
f TM\ oo n 

elements of the tree 2V ' = Un 2 may then be utilized 

so that the problem is translated into a problem about 

subtrees of 2(:IN) . 
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Let T c 2(]IN) be a tree. An infinite branch in T 

we usually denote by t and we often identify t with 

the corresponding point in [0,1]. By Z we denote the 

set of all infinite branches in T and by r we denote 

the complement T =- [0,1] ̂ Z . Then r can also be des­

cribed as the union of all intervals corresponding to 

endpoints of T . By end(T) we denote the set of end-

points of T . If E t 2( ' ̂  {0} , e1 denotes the neigh­

bour, of e . We assume that e and e' can not both 

be endpoints of T . For any • e G T , we denote by 

Y(e) the nearest endpoint extending e (if there are 

sevaral such points, we choose the point lying furthest to 

the right). The relation "5 extends I " we write 6* > I. 

We define M e ) and E(e) by 

5(e) =- lenght of Y(-)', A(e)=5(e)- lenght of e . 

For any Y € end(T), we denote by CX(Y) the point 

in T of shortest lenght which has Y as a nearest end-

point. 

The idea is now that for each t € Z , we consider 

the ball with center t and diameter 2 n to be essen­

tially identical with the dyadic interval tin (of course, 

this is not quite right so that it needs some adjustments 

to translate a result for trees into a result of the pure­

ly geometric nature which we considered earlier). Our 

attitude means that Y(t|n) replaces the largest ball 
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As the diameter of Y(tln) is 2~-
( t , n )

 , we see that 

the gap-function n is now replaced by the function 

<t,n) - 2 - 5 ( t l n ) . 

The main results of a positive character may be 

summarized as follows: 

Theorem 6, In each of the following cases: 

o 
Case 1 

Case 2 ° : 

v ; 2 - д < t , n > - . v t є z f 

l Л ( a ( ү ) ) l ү l < oo , 
ү Є e n d ( T ) 

^ н . t i n f 1 2 " Д ( t l n ) = ~ v t є z , 

r
 2

-A (tin)
 = m y fc€ z ^ w h e r e A * ( e ) rzmaxfAte), Ate

1)), 
0 

it can be concluded that JZ| = C 

By Talagrand's example (Theorem 5), the second condition 

in case 1 can not be dropped. 

Note that the result in case 3 is a considerable 

improvement over the result corresponding to Theorem 3. 

All 3 cases are handled by the following result: 
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Lemma. Assume that there exists a function ip : T -* IR
+ 

such that 

(a) Г Ф(tln)
 2
'

Л ( t | n )
 = co vtЄ Z 

and 

(b) I ( I ФU))-lүl < « 
үЄend(T)

 ч
a(ү)<c<ү ' 

hold. Then |Z| = 0 . 

Actually, condition (a) only comes into play via the 

following inequality (which only requires (b)) . 

í ( г - - < . i . > .-MI""Ь 

Thus, we may replace case 3 of Theorem 6 by the general 

result that 

, (.- 2 . . .«„. 1 ) đ t 

As we shall now indicate, A can not be replaced by" A 

in this inequality. 

P u t , for 1 < p < n , 

IXAJO, % 

jbuud p 

m p 

krti 0 

(the figure corresponds to the case n = 4, p = 3) . 

Define T ® T^ by taking T T̂  and 
. M1 #

P1 n2,P2 n2,P2 
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p l a c i n g t h i s t r e e on t o p o f a l l t h e 2 1 - 2 1 ^ 1 end-

p o i n t s o f T of length n. This process may be con t inued to 
n 1 , p 1 

o b t a i n i n f i n i t e " t e n s o r p r o d u c t s " o f t r e e s . 

Theorem 7 . Assume t h a t c and n are numbers such _______ . v v  

t h a t 1 < p < n ; v > 1 and such t h a t 

I . 2-Pv < _ , fл p^ 2 
-Pv 

= co . 

P u t T = T _ ® T^ ® ••• . Then 
n 1 P 1 /?i2p2  

[ ( l 2 - Д ( t l n > ) d t 

We leave the details of proof to the reader; 

Remark that the above example (examples) can not be used 

to obtain an example as strong as Talagrand's. The reason is 

that for all the examples, it can be shown that |Z I = 0 

where 

{
t Є
z| fQ2-*™*> = - } . 
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