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SEVENTH WINTER SCHOOL (19°))

A NOTE ON MFA UP* JILITY COF TRAJECTCRIES OF A
STOCHASTIC PROCESS
1, 7ahradnik

In this nota, 3 pressnt an alternativoe msthod of ctudying the
measurability prop. rties of trajectories of 2 ctochastic pro-
cess, More precisely, we will consider the folleowing situation:
Given any vector or scs.iAr measure
e B(x<0 >y

on a family 1ﬁ(x‘<°'1>3 of all Baire subsets of X<O'£>, where
X 1is some locally compact metrizable space X ,consider the
question: On which trajectories lives ﬁa ?
Our method is based on the identification of each Baire function
f€x<°'1> (or, rather, the corresponding a.e. equivalence
class) with the probability aA; on <0,1>xX , determined
uniquely by the requirements: _ '

i) a; 4is carried by a graph of f

ii) the projection 7 Ag) of Ay on <0,1> is just

the Lebesgue measure ,

Thus, by identifying f with &, , the topology of convergon-
ce in measure on functions can be induced by the weak® topology
on the space 7(< 0,1>x>‘2) of all Radon probabilities on
<0,1>*5’< (where ;2 denotes a one point compactification of
X ).
Now we generalize the notion of a trajectory,
Denote by

5= {0( c? , I<0,1>(0\) = Lebesgue measure} "genera-

lized trajectories"”
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7 neas {o<€.7", & 1is carried by a graph of some
Baire function f€x<°'1> } “"measurable trajec~
tories”

7 cont ® { A €T, & is carried by a graph of some

a.e, continuous function f€X<°'1>} "a.e.
continuous trajectories" . '
Now, we “carry on" the measure /E,’: &(x<°'1>)——>e in some
very natural way to the space 7 .
Then we will investigate the support of the resulting measure.
We will show, at the end of this note, that each measure on
¥ meas ©3n be viewed as a measure on x<°'1>
Our results will then be comparable to the classical ones (see
e.g. [1 . Th.III,3,1]'). Actually, they generalize them slight=-
1y, . .
Definition
Denote by PIA(o&) =2 (IxA)
(PIA(d ) says, "how often & dwells in A during I ) .
Suppose that each map ’

— ' n
{tloootn—"[Ua(]l_tl...tn(AlxcnoxAn)} :<0,1> — E

is Lusin measurable, whenever Ai are open in X ,

~ -, =]l
Put (P PRI o ) Lo f Ji (A XoooxA )c
[“tT1,A, IA, A tgeeet n
leaooXIn

.dtlooodtn .

. X<001>_,x {tl.'.tn}

a
where tyeeoty

denotes the canonical

projection,
Theoren 1, ﬁi extends uniquely to a vector measure
ﬁi: B(T)—E .,
Examplé. It is not true in general, that ﬁE lives on T° 1

meas
For an arbitrary Baire probability on X , put
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o =1 B
iu(w tl.g.tn(Alx"'xAn) s ] V(Ai) and extend this

according to the Kolmogorov theorem,
The resulting probability on x<:°'1:> gives rise to a measu-
re /Z . which is, as can be easily shown, supported by a sing=-
le eiement of 7 , namely by A@V , where A denotes the
Lebesgue measurel!
Notation, Denote by

1, = {(t,8)€<0,1>|t-s|<d}

N omEE A
n
Ig- =2 {(tlccotn)€<0'1> » 'ti-t:"<d‘}
Ag = ()™t
Theorem 2, ﬁD has the support in gheae <> for each £>0

and A opaﬁ the following holds:
N0 = a5 {(t.9), || (TI(T;J'(A)AJI Haf>e }—o.

Exanple, The latter condition holds e.g. in the case, when
| @7 sHA AT 2A) | 55> © holds for almost all tE€<0,1>.

This corresponds to the a.e. stochastic continuity of the pro-
cess,

Theorem 3, /f has the support in yéont <= for each &£>0
and A open the following holds:

-1 — 1

&x0 = AR {(tl.-..tn)," T AN tl."tn(Ax...xA)“>6

holds for some i }-—+ O uniformly with respect
to ncN .,
Note., For Markov processes, this gives rather weak results
(a.e. continuity instead of the nonexistence of the disconti=-
nuities of 2, kind).

In order to prove an analogy of Th. 3 for trajectories without
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discontinuities of 2, kind, we should use some more subtle

Markovian arguments.

Finally, let us show that if /’&,} has the support in rmeas .

then it can be viewed as a measure on X<°'1> . Chooge a par=

tition of < 0,1> consisting of all intervals
Ii B < -2!-E ' iﬁ-i' > ’ i=0,1,,,,,2-“-1 *

For each tE<0,1> choose‘ i(n) such that te€ < ia ' -Z—:';!'- )

Call t€<0,1> a Lebesgue point of o ¢ if there exists
yEX such that for each A open containing vy ,

n
lim (2 PIi

. =1 .,
n—+0o nA(d.))

(n)

Then it can be shown, that there exists a null set NC<0,1>
such that the follow:fng is. true: .

For each t€<0,1>\N , t is the Lebesgue point of /’f{/ almost

all trajectories end if we fix some xoe X and put

F(t) =y whenever t is a Lebesgue point of i, ,
F(t) = X, otherwise
then the map

{D\f w.%’} : Tpeas™ X<°'1> is Baire meas:rable and
the image of (\’Z/ coincides with (w on 6(X<°'1> Ny .
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