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EIGHTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1980)

On generalizations of Ladnev’s theorem

J. Chaber

We investigate spaces X with the following property
(») for any Y and any closed mapping f : X—Y Y =

(e8] -
a YOUU Y, . where f”'(y) is compact for yEY, and Y, is
i=l .

closed and discrete in Y Cfor 121 .

It has been proved by Ladnev that metric spaces satisfy
(%) .

A list of generalizations of LaSnev’s result with exact
references may be found in a recent survey paper on closed
mappings [B] (see also [D] and [w] ).

et We prove
Theorem 1, Regular O -spaces satisfy (%) .

As a corollary we get
Corollary 1 [wﬂ. Moore spaces satisfy («) .

Theorem 2, If X is Cech complete, f : X—Y closed and
9f'1(y) is compact for yEY , then Y has a decomposition
as in (») . .

Corollary 2,1, Metalindelof Cech complete spaces satisfy (=) .

Corollary 2,2 [D]. Dieudonné complete Cech complete spaces

satisfy («) .

The following example 1lluetra¥ea Theorem 1.
Example 1, One can construct three topologies on the unit squa-
re such that the projection f of the resulting spaces X,
n=1,2,3 onto the unit interval I ie continuous and closed

and



1, X; o a Hausdor o -space and f
c ¢ for yE ,
Xy o compast but f (y) 48 not coapact
1=
« X 1s paracompact and has a cloaurs rv ve
y compact t bug f'ity) ie not L1 deldf for
In Th orem 2 one cannot r place & ch completenes by t
p=-space propsrty,
Exanple 2, There ex:l.gu a p-ppace X and a closed mapping f
of X onto s locally compact space Y weuch thet af'l'(y)
is compant for yEY and Y doss not have sny decom ceition
as in (») ., )
In view of Corollary 2,1 and & result of VeliZko the fol-
lowing problem sesms to ba natursl
Probl w. Do metalindelof p spaca satisfy (=) 7
Th nethod of proof of Theorem 2 cannot be used to solv W
this probles bacauss of
Ex mple 3, There sxiets a perfect napp!.ng of & met lind 1°¢
p~space onto & epace that 1s not & . p-space,
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