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EIGHTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1980) 

Realizing Hoюomorphisш of Cat gory Algebraв 

Siegfri d Graf 

In a serieв of pap rs D. Maharam and A.H. Ston inv stigated the 

pгoblem of realizing iвomorphiвmè and automorphiвms of category 

algebгas Ъy certain point-mappingв• It is the purpose of this talk 

to presentaвimilar result. for homomorphismв of category algeЪras. 

Definitionв; 

For a topological вpace Z let fe(Z) denote the Є-ideal of all sets 

of first category in Z, & (Z) the c-field {в^Z | HU open: BЫJ Є iҷ (Z)J 

of sets with the Baiгe property, and JCÍ(Z) = í (Z)/fe-(Z) the category 

algeЪra of Z. The symЪol&(Z) always вtands for the Borel field of Z. 

If Z iв a Baire topological spac (i.e. if an open suЪset U of Z 

Ъelongs to fc (Z) if and only if U s jø) then, for every C^Л(Z), there 
• o 

exists exactly one regular open set 0(C) in Z (i.e. Q(C) - G(C) ) 

which is contained in th equivalence claєs C (i. *[б(C)J- C)-

The map Q: £(Z) —->Ђ(Z) has the following properties: 

(i) ([Øl) = 0, 9(0-1) - Z 

( i i ) (C п D) s 0(C) П (D) V C,D € £(Z) 

( i i i ) í V t C - J І6Й) = U ÍЄ(C±)\ ІЄIS for every family (C±)±єl 

inX(Z). 

Theorem: 

L t X Ъe a complete metric space, Y a Baiгe topological space, and 

Ş: EÍX) -ì> JXY) a e-homomorphism. Tlien the following pгopeгtles of £ 

aгe equivalent: 

(i) Ғor every family (U^ì^gj of open єuЪsets of X the identity 

Ф íU^liєiJ) =Ví|(u±)|ieil 
holdв. 
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( i i ) For every open covering ( U i ) i ^ I of X (with card I <£ wt X ) 

VlS&W^lieiJ = [Y]. 

( i i i ) There exists a dense Gr-set D c Y and a continuous map 

f: D-*X with [ f ^ B ) ] = $(B) for a l l B e £ ( X ) . 

Proof: ( i ) = * > ( i i ) and ( i i i )=^> ( i ) are easy to check. \ 

(i i)-=-=^(iii): For y £ Y l e t T y « ' £ B € B(X): y eG($(B))J. Let D be 

the set f y e Y| 7 converges}and define f: D *—*"X by f(y) = lim f • 
* y 

Then (D,f) has the required properties. 

Corollary 1: 

Let X be a complete metric space, u\ = wt X, Y a Baire topological 

space, and $: X(X) —**JL(Y) a G-homomorphism. Then the following 

conditions are equivalent: 

(i) §> is an>ui-homomorphism. 

(ii) J is a complete homomorphism. 

(iii) There exists a dense Gg-set D c Y and a continuous map f: D->X 

with [f"1(B)J = $([B]) for all B € ft (X). 

Proof: The corollary is obtained from the theorem by considering 

the €-homomorphism B(X) -*\E(Y) , B l--> ̂ ( [B] ). 

Corollary ?i (Maharam - Stone [}] ) 

Let X and Y be complete metric spaces and $: £(X)--->.£(Y) an isomorphism 

onto. Then there exist dense G_-sets D c Y and £ c X and a homeomor-

phism f from D onto E such that ff"1 (A)] -= $( [A] ) and [f(Bj] s^"1 ( [BJ) 

for all AG 13^(X), B 6 l y y ) . 

Corollary 3: 

Let X be a separable metric space, Y a Baire topological space, and 

f: Y —^X an arbitrary mapping. Then f is & (Y)-B(X)-measurable if and 

only if there exists a dense G~-set D e l such that f... is continuous. 
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Corollary h: (Fort[l]) (cf. Namioka [6], Theorem 1.2) 

Let Y be a Baire topological space, Z a locally compact separable 

metric space, and R a separable metric space. If f: ! x Z—*R is con

tinuous in each variable separately then there exists a dense G_-
o 

subset D of Y such that f-is continuous at each point of DxZ. 

Let us recall that a finite measure v on the Borel field ty(X) of a 

topological space X is called T-continuous if, for every filtering 

decreasing family (A,).,fT of closed sets in X with (\ k. = 0, the 

equality inft?(A.-) 1 i€lj = 0 is satisfied. For a measure space 

(YtOlt/-) let (XAc be the quotient of the C-field 01 w.r.t. the r-ideal 

of LL-null sets. 

Corollary 5: 

Let X be a complete metric space, (Y,0L,K) a complete finite measure 

space, and£: <ft(X)~~'*GC/<- a G-homomorphism.such that J-«-̂  is a t-contin

uous measure on %(X). Then there exists an OC-fi(X)-measurable map such 

that f-T^B)] =f>(B) for all B £ fc(X). 

Proof; It follows from Ionescu Tulcea [2], p. 5-t» Proposition 1 that 

there exists a topology T on Y such that (Y,T) is a Baire topological 

space, 01 equal B thee-field of sets with the .fcaire property w.r.t.T, 

and the i*.-nullsets are just the sets of first category in (YST). Thus 

Q/M. is the category algebra of (Y,T). Using the "{"-continuity of u-J 

we obtain immediately that J> satisfies condition (ii) in the theorem. 

Hence the theorem implies the existence"of an d-I5(X)-measurable map 

with the desired properties. 
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