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EIGHTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1980)

Realizing Homomorphisms of Category Algebras

Siegfried Graf

In a serles of papers D. Maharam and A.H. Stone investigated the
problem of realizing isomorphisms and automorphisms of category
algebras by certain point-mappings. It is the purpose of this talk

to presentasimilar result. for homomorphisms of category algebras.

Definitions:

For a topological space Z let ‘n.l(z) denote the ¢-ideal of all sets

of first category in 2z, &p(z) the ¢-field {BCZ {3v open: BaU éh.l (Z)l
of sets with the .ga_ir_q roperty, and £(2) = ip(z)(b.‘ (Z) the category
algebra of Z. The symbol B(2) always stands for the Borel field of 2.

If 2 is a Baire topological space (i.e. if an open subset U of 2
belongs to 12.1 (2) if and only if U = @) then, for every cex.(oz), there
exists exactly one regular open_set O0(C) in Z (d.e. 9(.0) = G(C) )
which 1s contained in the equivalence class C (i.e. [G(C)] = C)e

The map 0: £(2) — B(Z) has the following properties:

(1)  ofel) =8, B([2]) =2

(11) ©(cnD) = B(C) n O(D) Y ¢,b € L(2)
(111) 0(Vic,| 1€1Y) = O TIETT for every family (Cy), g
Theorem:

Let X be a complete metric space, Y a Baire topological _space, and
P '{';(}.() —> J{Y) a ¢-homomorphism. Then the following propertiés of §
are equivalent: '
(1) For every ramny'(tri)1EI of open subsets of X the identity
’ B(U fu,l1e1) =Vid(mw,)l1e 1}
holds. ' .
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(11) For every open covering (Ui)iel of X (with card I € wt X )
V {Puy)|1e 1} = (¥].
(111) There exists a dense qs-set D €Y and a continuous map
£: D—>x with [177(B)] = $(B) for all B € TYX).

Proof: (1) =>(i1i) and (4ii)=> (1) are easy to check. N\

(11) => (111): For y € ¥ Let T ={Be B(X): y €0@(B))]. Let D be
the set {yc ¥l ‘I’ converges}and define f: D —>X by £(y) = lim ‘J-'y.

Then (D,f) has the z:équired properties.

Corollary 1¢

Let X be a complete metric space, ¥t = wt X, Y a Baire topt;logical

space, and §: L (X) —J(Y) a c-homomorphism. Then the following

conditions are equivalent:

(i) 9 is an m—homomorphism..

(11) & 1s a complete homomorphism.

(1i1) There exists a dense Gx-set D 'c Y and a continuous map £f: D—>X
with [t71(B)] = §([B]) for a1l B ¢ 8, (%).

Proof: The corollary is obtained from th'e theorenm by considering

the ¢-homomorphism B(X) —X(Y), B> §([B]).

Corollary 2: - (Maharam - Stone [3])

Let X and Y be complete metric spaces and §: I (X)—>X(Y) an isomorphism
onto. Then there exist dense Gy-sets D € Y aqd Ec X and a homeomor-
phism f from D onto E such that [f~ (A)] = B([a]) ana [t(B)] =§'1([B])
for all Ae B,(X), B € B (V).

Corollary 3:

Let X be a separable metric space, Y a Baire topological space, and
f: Y — X an arbitrary mapping. Then f is BP(Y)-B(X)-measurable if and

only if there exists a dense Gs—set D c Y such that le is continuous.



Corollary 4: - (Fort(1]) (cf. Namioka [6], Theorem 1.2)
Let Y be a Baire topological space, Z a locally compact separable

metric space, and R a separable metric space. If f: Y X Z—>R is con-
tinuous in each variable separate_ly then there exists a dense G, -

[
- subset D of Y such that f-is continuous at.each point of D«x 2.

Let us recall that a finite measure v on the Borel field R(X) of a
topological space X is called T-continuous if, for every filtering
decreasing family (A, ) of closed sets in X with (\ A, = @, the
1/1el ieIl 1",
equality int{v(Ai)l ie I} = 0 1s satisfied. For a measure space
(!,G.,/.) let Q/}a. be the guotient of the ¢-field A w.r.t. the {-ideal

of }u-nullsats -

Corollary 5:

.Let X be a complete metric space, (!,0.,}«) a complete finite measure
space, and §: B(X)—> W a.G-homomorph-isn_such that ,ua; is a T-contin-
uous measure on B(X). Then there exists an({-B(X)-measuradble map such

that [F18)] =&(®) for'all B € B(X).

Proof: It follows from Ionescu Tulcea [2], ‘Pe 54, Proposition 1 that
there e:}d.ats a topology T on Y such that (Y,3) is a Baire. topological
space, Q('equals the ¢ -field of sets with the Baire property w.r.t.7,
and the ’..—nullsets are just the sets of first cate‘gory in (Y,3). Thus
0./}4. is "the category algebra of (Y,7). Using the T-continuity of ,.-§
we obtain immediately that § satisfies condition (ii) in the theorem.
Hence the theorem implies 1".he. existence "of an Q-E(X)-m.easurable map

with the desired i:ropgrties.
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