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8TH WINTER SCHOOL ON ABSTRACT ANALYSIS 

EXTREME EXTENSIONS OF POSITIVE OPERATORS. II 

BY 

Z. LIPECKI 

The results we present here are taken from the author*s 

papers £6] and [71, the second being a joint work with 

W. Thomsen (Miinster). They extend and complement some re

sults of [5] and [6] (see also [3])« 

Throughout X stands for an ordered real vector space, 

M for its vector subspace, and Y for an order complete 

real vector lattice. Let T6L+(M, Y) and put 

E(T) = {.SeL+(X, Y) : SIM = T}. 

Clearly, E(T) is a convex (possibly empty) set. 

We continue the discussion of the following three prob

lems: 

• (A) Under what conditions E(T)=.fc0? 

(B) Under what conditions extr E(T) 9-0? 

(C) How can the elements of extr E(T) be described? 

The first to deal with (A) was Kantorovic (1937) who 

proved that the answer is positive provided M majorizes X. 

The first to deal (essentially) with (B) was Bonsall. He 

proved that if X has an order unit u, M = lin {u} and Y=-R, 

then extr E(T)£0 ([11, Theorem 3)* The following more gen

eral result was proved in [51 (see also [31, Theorem 1). 

THEOREM 1. extr E(T)£0 provided M majorizes X. 
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Of course, the assumption that M is majorizing is not 

necessary. (Take M=£03; then S = 0 is in extr E(T).) 

A somewhat more complicated example shows that problems 

(A) and (B) are not equivalent. 

EXAMPLE 1 (171, Example 2). Let (£1 , H , ^ ) be a non-

atomic probability space. Put X=-Lp(jO, where lsp<oo, 

and M = lin 11^}. Define T: to — R by T(t1 ) = t. Then E(T) 

can be identified with the set 

{feL (^) : Jf d̂ .= l}, 

where q is the exponent conjugate to p. Hence, as easily 

seen, extr E(T) -= 0. 

Not much more seems to be known about problems (A) and 

(B) in the general setting we are concerned with. For 

a positive answer to (A) the following condition must 

hold: Tc>-co, where Te(x)•» inf { T(z) : x^zeMj, This con

dition is sufficient in spaces with order unit (C4], (ii)) 

and so in finite-dimensional spaces. Unfortunately, it 

does not suffice in general as shown by an der Heiden 

(C2]f the Example). We shall give another example to the 

same effect. 

EXAMPLE 2 ([71, Example 1). Let (fl , T » ^ ) , M and T 

be as in Example 1. We regard M as a subspace of Lo(yuu)f 

the vector lattice of real-valued ^.-measurable functions 

on .Q. We have Tc(x)sess sup x for xeL0(p~)f and so 

Te(x)>-oo. However, E(T) = 0 since, by a well-known the

orem of Nikodym, there are no non-zero (linear) function-

als on L0(/UL) which are continuous with respect to the 

topology of measure convergence, and each positive func

tional on Lo(yu..) would be continuous. 
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Next we turn to problem (C). From now on we assume that 

X is directed by its. ordering. In particular, X can be 

a vector lattice. For SeL+(X, Y) and x e X we put 

Sm(x) =inf {S(v) : ±x .*v<=X}. 

In case X is a vector lattice, Sm(x) = S(l xl) for xeX. 

THEOREM 2 (C6J, Theorem-2). Let T e L^(M, Y) and SeE(T). 

Then S e extr E(T) if and only if 

inf { S (x-z) : z e M } = 0 for each x e X. 
D". 

For Y=R this result is due (essentially) to Portenier 

(C9]» Theoreme 3.5) • In case X is a vector lattice, it was 

obtained, independently of. Portenier, by the author, 

Plachky and Thomsen (C4-1, Theorem 3; see also C31, Theorem 

2). However, the first to deal with (C) seems to be Bonsall 

who proved a prototype of Theorem 2 for M = lin {,u}, where 

u is an order unit of X, and Y=R (C1J, Theorem 1). 

Finally, let us mention some applications of Theorems 1 

and 2. 

THEOREM 3 (C73, Theorem 1). Let N be a vector subspace 

of Y and let yeY. Then yeB N, where B N denotes the band 

generated by N, if and only if inf {ly-vl : veN} = 0. 

Denote by H(X, Y) the set of all S € L+(X, Y) such that 

|S(x)l = Sw(x) for each x e X. In case X is a vector lattice, 

SeH(X, Y) if and only if S is a vector-lattice homomorph-

ism. 

Using Theorems 2, 3 and 1, one easily obtains 

COROLLARY (C7J, Theorem 3, and C51, Corollary 2). Let M 

be directed by its ordering and let TeH(M, Y). Then 

(a) extr E(T) = E(T)nH(X, B T C M^). 

(b) If M majorizes X, then extr E(T) = E(T)nH(X, Y) ; 

in particular, E(T)nH(X, Y) £ 0. 
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For M and X "being vector lattices Corollary (b) has been 

obtained, independently and by different methods, by Luxem

burg and Schep [8] (Theorems 3.1 and 4.1). 
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