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lre nantereovié~Rubinstein distance
J. havritil, Traha
If (X,?) 1¢ @ preudometric cpece ther the pseudometric P
neturelly inducec scme disternce betwcen probebility messures.

Therc sre th2 fHllowang rotural possibilities how to define such
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The lcch tho xetrics are vsitally called tre hentorovid~FRubirstein

disvurces,

Under certain ceond.tione all metrics civen tbove cre egusal,
That’c the recsen wey it ic convenient to work with the
Koentorovic=rubinstein dictunce,

Kantorevil has chrown in [1] that @,=fg if X 1e & compact
metric cpace, In [2] end [3] Kentorovié end Rubinectein proved
(c:sentially) thet “,=f if ¥ i¢ o compact metric space, We

shall show that e,=f2=%, if ¥ is an artitrary cerarable pseudo-

We shaell use the following theorem on a non-negative exten-
sion of a l
Theorem 1. Let E be zn ordered vector space, let I be & non-
negative linear functional on a subspace F of E. Let

(Vye E)(Jzer) y=u

(i.e. F is a majorizing subspsace of E).

Then there is a non-negetive linear. extension of I to E.
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.or th. ro se [4 . 3
vow n. n o
“heoren 2. t ( 1 b a e &l peuo tric s,ace, let M
Y be two probability messures on a < -zlgebra =2 on X containing
2ll Eorel sets. Let ?4,?2,?& be the distances defined above.
Then 0 = fs .
Preof: (1) Let - be & measure on > ®> such that 7 -nL7=
“M-Y. Then it holds
M) =wE)=[t.amy -[f.a5,79 =ff(x)dz(x,y)—ff(y)d»*((x,y)s ff &y =
= "Z(f) for each bounded function f with Lip(f)< 1.
Thus we heve Ps=(% + Obviously @, < ;.
If (g =e0, then F{‘S R Rl Thus let us consider the case fi< oo
(2) Lemna. Let {O’Y be bounded measursble functions, ael and
Px)+ y}(y)«ra,sa(x,y)z ¢ for 2ll x,yeX.
Then it holds /A(%’)"F V(yf) +a‘0, =0.
Proof of the lemma:
a) For a<0 we have
Ml VP = fpd 403+ fp(x)eq (x,9) z(-a)ff (%:7)2 7(x,3)z
= -af‘3_>_ -aﬁ, where ’Z=(u® 1)_‘ (the last inequality is vsalid
by virtue of (1)) .
bt) Let a>0. Put h(x)= inf {')(/-(y)+a gi)(x,y)} yeX}.
Tnen substituting y=x we get h(x)= 1/1»(}:) and by the assumption
hix)= —T:’(x),' hence h is a. bounded function.
For a fixed yeX
)V(J)+a§0(7,y) ' -
is @ Lipschitz function with the constant 2, thus Lip(h)<a as
well, Hence we have
agafz h)- v(h) = -(u((ra) - v(y“)
(3) by measns of the lemma one can eas ily show that the formu’a
fz(f)= («(\a) + V(w/»)wsﬁ,

gives 2 sound definition of a non-naiative linear functional



119
for all f(x,y)= (('(x)? \}?(yha‘O(x,y), where f’"f are bounded
measurable functions and a€R.

By the theorem ! and by the lemma there is a non-negative
lineer extension of 7 to a&ll functions mejorized (in the abso-
lute value) by af(x,yhb- (where a,b sare positive congtfaﬁts).
We shall denote the extension by :zv as well,

(4) TFor an arbitrary € >0 there is a sequence of pairwise
disjoint sets 4, €3> such that diem 4, <€ eand UA =%, for

Meq

(X’P) is a separable space.

Put
_ 0 for [.({AL).I)(A‘?) =0
cij <,~(AiXA., otherwise, 4
f(Ai)v(Aj)
and

m(o) Zc (UC'V(Bn (A xA ))

Then 7 1 2 non-negative -adc\ltzve peasure.on 2@,

Furthermore we have

?(Ai‘Aj) R
"Z(AXX) ;‘%‘Aﬂv‘vm./‘@ » ((AnAL)xA4;)

v (A)(A)
=AAZJfo:LWf(A ).

for a1l AeZ (if Q(Aj)=o tnen (A x ) < 7 (xx85)= v (8 )=
" =0, thus m(A <AJ) =0). '
(5) Dpnote UAt' Then it holds
0< »Z(h m{)- i »z(A < By)s '7(.& x (YI-B )) < 7( x(X-5)) =
J=!

-V(J(-Bm),_
but (x-B,)\ #, hence

g (Ax!) ‘z(Ax‘{) (u(A )
Thus we have

m(Axx)= Z /u(AnA) ,«(p) for all Ae > (h Alh; ) =0
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then obviously »Z(A{‘x Aj)=0), .
enalogously »l(x xA)=V(A) for all Ae Z, i.e. T =H; W=V

(6) Put 35= sup §Jl A x & on A x 4, end enalogously

J

& inf P [ 4% &5 on Apx aj.

Then it holds

7(0) = fg(g) )< f7(_€ 2 < "Z(f +2£"ﬂ+2g”
for' (;j .B<B 7(;{2) and

(05 p)= > @ (Ashy). uf pl Ak =

B yj=1

Thus we have 3_<.ﬁ .
Remark. The main result (and its proof) remains velid in cace
that ’9 satisfies only the following ccnditions

fd(x,x)=0, 0 SD(}:;y )< o0, ?(x;y)s P(x,z)+f(z,y
for all x,y,ze€X if we replace Lip(f)<a by £(x) -f(y);a;ﬁ(x,y
(X is supposed to be separable in the topology deflned by the
tacis {yex( {O(x,y)<£,, Sﬂ(y,x)<'é.§ , xeX, €>0 .
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