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JINTE I TER SCHOCL OF ABSTRACT ANALYSIS (1GE1)
OX CERTAIN CLASSZES OF iQLl.ED LINEATR SPACES
G. GODINI

Let E be a (real) normed linear space and for x,y&E let

us denote by <«(x,y) = linm t-l( Hx+tyl - lIx0 ). It is known that
trd*
(1) 0 g (x,y) + Tlx,-y) = 21yy

If for all x,ye SE ’ SE the unit sphere of E, we have e?:uality
in the first inequality of (1), then the space E is called
smooth. The upper bound in (1) is a rough one, in the sense

that if we ask that equality holds in the second inecu2lity

of (1) for 211 x,ye Sg» then no space E(# £03) has this property.
In [1] , Remark 2 we improved this bound shoving that for all

x,y € E we have:

(2) v(x,y) + Tlx,~-y) £ 2 aist(y,N (x))

vhere'NE(x) is the closed linear subspace of E defined by
NE(x) = {zeE l't(x,z) + T(x,=2) = 0}

In [1] we studied the spaces E with the property - vhich we
called (A) - that for £11 x,v€E equality holds in (2). Clearly,
the swooth cspaces have vrorerty (A) but they are not tre on Y
cnes. In tlre reantime we have observed thet the upner tound

in (2) can be irproved, zné correspondingly we have obtzined



other cl-esses of norred linear s-acec. The purnoce of thie
note is to raise some guestions ccncerning trese claccses of
normed linear epaces.

e recell ( [1], Treorezc £-€, Zerark 10) that the
follovins snaces rave property (f\): Ll(T,’b), Cl(Q,)/),co, c,

L%, B" endowed with the max norm. Let C(Q) be the Banach
space of all real-valued continuous functions over the compact
¥aucdorff space Q, endowed with the max norm.

{uestion 1. Has C(Q) property (/) ? If the answer is
affircative, then L°°(T,rb) has proverty (/\) since this pro-
rerty is invariant under linear isometries. If the answer is
nerative, then characterize those Q for whick C(Q) have (N,
and the same questions for L°°(T,)V).

Let us consider E as & subspace of its second dual E™",

Tren by (2) the following relation holds for all x,veE:
(3) T(x,¥) + T(x,-y) £ 2 dist(y,Npxn(x))

Since for each x €E we have TZE(x) c NE‘“‘(X)’ the upper bound
in (3) is better than the uprer bound in (2). Then we can
introduce a class of normed linear spaces E with the proper-
ty - which we c21l (A,,) - that for 211 x,y eE, equality
rolds in (3). Clearly, if E has proverty (/\) then E has vro-
rert: (J&'“), but the class of norred linear snezces vith nro-
rerty (A,,) is larger than the class of spacec vith nroper-

ty (A). Indeed, vie gave in [1] 2n exammle of a space T with

exsr tr stov tiat ¢ dence sutcmace I, of 2 cozce I wvith vroner-
ty (/) ras eleo pronerty (N

If tre coace C(L) kas rot =roverir (/A), tlen we have :



iuestion 2. The same as (uestion 1, but fcr property (N

1f the Banach enace C({) has property (/\g«) if and only
if (%) har nronmerty (JAA), tren we have:

Luestion 3, Give an examrnle of a Banach spzce E vhich har
oroperty (JA.) but not (A).

e cannot improve the uonper bound in (3) using the higher
even duals E(2%) of E, n 2. This is a consequence of the
fact that the existence of a norm-one linear projection P of
E"™ onto the Banach space E, implies that dist(y,Fp(x)) =
= dist(y,NEn(x)) for all x,ye E. Thic 21so chows that the
example required in Questiorf 3 can not be a dual svace (since
then promerty (/) is equivalent vith (Ngw)).

It is not difficult to show that if dim = 3 3 and all
closed hyperplanes of E have nroperty (A) ((Asxe)) then =
has nroperty (A) ((Agx)). This result is insignificant if
someone answers aff:irmatively the following question :

Cuestion 4. Let E be & normed linear svace with dim E 23,
If 2ll closed hyperplanes of E have pronerty () (resp. (Aa)
is then E smooth? For dim E = 3 the arsuer is affirmstive [17,
and an cffirmative answer in the finite dimensional case for
n > 3 vill give the following characterizetion of 2 (not neces-
sarily finite dimensional) smooth space: If dir Z » n+l, n3»3,
then E is smooth if and only if each of its n-dirensionz2l sub-
spaces has yprooerty (A). For n = 2 this is true ([ﬂ, Theorem

In order to give znother improvement of tlre upper bourd

in (2), let uc denote for x €=
ay(x) = {rezt|urt =1, £(x) =qx1}

and for a set A« E, ¢diam 4 = sup {l]al-azu l a.l,a.ze.;} .



One can show that for all x,y € £, the follovinf relation

holds ¢

(4) T(x,y) + v(x,-y) £ diaz A (x) dist(y,Ng(x))

Since diam AE(X):S 2, the upper bound in (4) is better than
the upper bound in (2). We call a space E to have proverty (K)
if for all x,y €E equality holds in (4). If E has property (A),
then E has (7&.), this being a consequence of [1] , Remark 5.
The class of normed linear spaces with property (K) is larger
than that with property (J/\). Indeed, all 2-dimensional spaces
have property (X), vhile ( {1] , Proposition 1) 2 2-dirensional
space has property (/) if and only if its unit ball is either
smooth or 2 parallelogram. No all spaces have property (K).
Indeed, we gave in [1] an example of a space E withrout (/)
but with tre property that diam AE(x) = 0 or 2 for 211 xg€E ;
clearly, this space has not property (K).

Among the spaces with property (K) there are thre spaces
with the property - vhich we call (A, ), 0 £« £ 2 - that for
2ll x,yeE, x ¥ 0, the following relation holds:

(5) v(x,y) + T(x,-y) = Kdist(y,N(x))

If E ras property (A,) for sore 0 £ £ 2, then diam Ag(x) =
= 0 ore¢ for 211 xE€E\ {0} » hence E has also proverty (K).
Jow, for each o €(0,2) trere exist snaces with proverty (_A_().
Indeed, tre 2-dirensional spacec having the unit b211 g cuitzble
"lens" (devending on o« ) kzve trie proverty., The additional
recuirerent (in the clasg of 2-Zimensional snaces) trat tre

cet cf the extreme pointe of tre unit ball, ex SE s to be

finite changes trLe atove cenclurgiorn, It is obvious tlzt for



L €(1,2) trere exicts nc 2-dimencionel swace E with proper-
tr (AY and ex Sg finite (thourk: for some o € (0,17 suck
craces exist).

Suertion 5. Do there exist an « €(0,2) 2nd a 3-dimen-
sional space E such that ex SE is finite and E has property
(A,) ? If the answer is affirmative, is this true for each
« €(0,2) ? If not, the same questions for dim E = 4,5,cc00
or at least to answer the following question?¢ is it true that
for each «{ € (0,2) there exists an n-dimencional space I such
that ex Sp is finite ord E hae prorerty (Ag) 2

If we reczré aczin T 2s a subspace of E™*, tren by (4)

we have for 211 x,y@E ¢
(6) T(x,y) + T(x,-y) & diam A ww(x) dist(y,N an(x))

e ca2ll E with vroperty (K“) if eguality olds in (€) for =211

X,y €. ‘e have dist(y,NEu (x)) ¢ dist(y,:‘ZE(x)) and diam .-‘.E.(x)_f

£ diam AEmc (x), x,yeE, so the followins ruection makec sense$
Question 6. Characterize those E for vhicl. we hzve

diam Acwe(x) dist(y,N_me(x)) ~ diem Ao(x) dist(y,N;(x)) for

2ll x,y€eE, vhere ~ <ctznds for £ , =, or > . Give an

exarnle of & space with property (K-*) but without both (X)

and (_/\“). Give zlso an example of a space with property (K_)

but witrout (K“ ). Jote that if E is Hakr-Zanach smrooth ([ ])

then otvioucly As(x) = ;.Empl(x) for 211 x €E.
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