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NINTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1981)

Tensor Products of Banach Lattices
with Applications to the Local Structure

of Banach Lattices and Spaces of Absolutely Summing Operators

N.J. Nielsen -

0. Introduction and notation.

In this note we shall investigate, when certain tensor products
of Banach lattices have the uniform approximation property (u.a.p.).
provided that both factqrs have this property. We then use these re-
sults to prove that if a superreflective Banach lattice has the
u.a.p.; then the approximating operators can be chosen with controlle
moduli. The results are also used to prove when spaces of absolutely
summing operators have the u.a.p. All the results of this note will
appear in either [2] or [6], to which we refer for further informa-
tion and detailed proofs. )

In the note we shall use the notation and ;erminology commonly
used in the theory of Banach lattices as it appears in [3] and [4].

Throughout the paper we let E denote a Banach space and X

a Banach lattice.

1. The tensor product E@nx .

Let us recall that a2 linear operator T : E -+ X is called order

bounded, if there exists a z € X, z > 0 so that
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(1) ITxl < lxll z for all X € X
and we define the order bounded norm Il'l‘llm of T by
T = inf{lizil | z satisfies (1)} .

el is a norm on the space B(E.X) of all order bounded ope-

rators from E to X ,.turning it into a Banach space [7] .

1.1 Dpefinition
) The m-tensor product E@mx. is defined to be the closure in
II-IIm of E®X in D(E*,X) .

It was proved in i2], theorem 2.2 that if X < is an order
continuous Kothe function space on a probability space (n,.‘?,u) ¢
then E® X can be identified in a canonical manner with the space
X(E) , consisting of all measurable functions £ : 2 = E with .

HEC) NG € X .

We now wish to comment a little on computation of norms in

E@mx .
If €j/€yse-c0€p € E then the function f : R® -» R defined

by
n

f(tl'tz"“’tn) = "jil tjeJII (tl,...,tn) € R"
is a continuous function, homogeneous of degree one. Therefore the
Krivine calculus of l-homogeneous expressions in Banach lattices
(see [4]1) gives that f(xl,....xn) can be given. a. unique meaning
as an element in X for all XyoeeosXy € X , we denote that ele-
ment by "jgl xje__i ”E . It can easily be proved that

n n
= * * *
(2) ”jzl xyey g sup{ljz:l e (ej)le | e* € E* , lle*ll < 1}
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n
Hence if T = I e.,8x, € E®X , then
Pt
"'n
(3) II'I‘IIm = i :1 xjej"}:"x . ]
2. The u.a.p. in E§ X and X . : A,

Let us recall the following definition

2.1 Definition

Let A >1, o : N = R, a function. A Banach space. E is
said to have the (A,¢) uniform approximation property ((A,9)-u.a.p.]
if for every n and every- n-:diménsional stibspace “F 5 E there is
a bounded operator T on E , so that |IITll < X , rank(T) < ¢(n)
and Tx =x for all x € F-. ) : .

We shall say that E has the uv.a.p., if it has the (A,¢)-u.a.p.
for some A >'1 and some function ¢ . Likewise we shall say that
E has the A-u.a.p., if it has the (A,9p)-u.a.p. for some func-
tion ¢ . The u.a.p. was originally introduced in [8). For further
developments on the subject we refer to [1]) and [5].

The following theorem can be found in [2].

2.2 Theorem

Let A > 1 . Then the following statements are equivalent
(1) There is a function ¢ : NxR, - N , so that for every
€ > 0 and every n-dimensional subspace F < X there is

an operator T on X , with IITx-xll < ellxll for

x € F, rank(T) < o(n,e) and

n n
(*) nv ITxJI < (M) I V Ile Il
=1 j=1

for all n-tuples (x3,%X5,....%X;) € X .
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(ii) For every finite dimensional Banach space E , E@ X has

the (A+e)-u.a.p. for all > 0 .

(iii) The same as (i) with the addition that Tx = x for all
x€F.

Sketch of proof .

(1) = (ii) . Assume (i), let € > 0 and let E be k-dimensional}
we choose an Auerbach basis {el,ez,:..,e;‘} for E . If F c E@mx
is n-dimensional with Auerbach basis {“1‘“2' ...,un} then we can

find {xij ] 1< i<k, i< j< n) so that

X .
(1) uy = I ei.@xij l<j<n
i=1
+« N
Put X, =span{x.; | i < k, § < n} and let (f) be an e-net
1 ij .

in the unit ball BE“ of E* . It is easy tc; see that for every
u € E@mx

. N
(20 Null < llsup | ule*) | e*eBg il < (1-e)~1 1 v (el |0
. j=1

According to (i) we can now find an operator T on X so

that (*) holds for N vectors and

(3) Hrx-xll < ¢ n~3x~1 nxn for all X €X) .

rank(T) < ¢(max((N,kn) n"lk"le)

For every u € E@mx we now get the following estimate of

(1eT)u ( I denoting the identity on E )

N
(4)  N(remull, = NToull < (1-e)~* 1 v |T(ufp) |1l
r=1

-1 N * -1
< (A+€) (1-€) v Jutg) [l < (R+e) (1-€)77 Null .
r=1 .

so that 18T < (A+g) (1-:)-l . Clearly

e-1

rank(I6¢T) < k ¢©(max(N,kn),n xl¢) ana using (2) ané@ the fact that
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[ul....,un}‘ is an Auerbach basis a computation shows that
lI(I@T)u—ullln <€ Ilullln for all u € F . Hence we have shown that

E@ X has the (A+e)-u.a.p. for all € > 0 .

i = (ifii) . Let € >0 and Fc X, dim F = n . By assumption
zsz has the (A+c)-u.a.p. with some dimension function ¢ ,
say, and we can therefore find a bounded operator S on zﬁomx

so that lisll < A+e , rank(s) < w(nz) and S =1I

n F°
27eF

Let T denote the group of all isometries of 22 onto itself

and put
1 1 ’
S, = (2" n1)7 I -(YTTery)s(very) .
YET
Clearly IlSoll < Ate , rank(so) < 2" nt w(nz) and S Ip -

ol,n =
|zzer
Since S° is invariant under all isometries YéIx , YET there
is a bounded operétor T on X with S_=I ©T . Clearly T =Is
o gn §3 F

rank(T) < (n-1)! 2° ©(n?) . Further for all x‘;,...,xn € X , we have

n n n
szllijlll = Il £ eJeTxJIIxn = .nso( ﬁ

5 ejaxj) llm <

’ n i n
(A+€) "jil ejox il = (M+e) "_1:1 [=410

and (ii) = (iii) is proved. (iii) = (i) is trivial.

We now introduce the following definition

2.3 Definition

Let X2 >1. X is said to have the (2A+)-order u.a.p., if it
satisfies one of the equivalent conditions of Theorem 2.2.
It is an open problem, whether the u.a.p. is equivalent to the

crder u.a.p. for general Benach lattices; all known examples of
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Banach lattices with the u.a.p. has in' fact the positive u.a.p.
and hence trivially satisfy condition (i) of theorem 2.2.
The two concepts are equivalent for superreflexive Banach

lattices, as it is seen from

2.3  Theorem [2]

If X is superreflexive with the u.a.p. then X  has the

(1+)-order u.a.p.

Proof

Let E Dbe k-dimensional and let € > 0 . We can then find a
k (depending only on kX and X ) so that Hulhnas k llull  for
all u € E® X . Since X has the (l1+g)-u.a.p., [5], all the argu-
ments of (i) = (ii) in theorem 2.2 can be performed except the esti-
mation of the norm of (I®T) there. Instead we get for all

u € EOmX

(xeT)ull < NToull < kT Null < k(1+e) Null - .

Hence Eomx has the (k+eg)-u.a.p. for all € > 0 . Since E is

finite dimensional and X 1is superreflexive E@mx is superreflexive

as well and therefore it has the (l+e)-u.a.p. by [5].

2.4 Problem

Is the u.a.p. equivalent to the positive u.a.p. for super-

reflexive Banach lattices ?

——

Using theorem 2.2 we can prove the following result on the
u.a.p. of m-tensor products. The proof is quite long and will

therefore be omitted here.



2.5 Theorem [2]

Let E have the A-u.a.p. If X has the (u+)-order u.a.p.,
then E@ X has the (Au+e)-u.a.p. for all ¢ > 0 . If X is super-
reflexive and has the u.a.p., then Eemx has the: (A+c)-u.a.p.

for all € >0 .

Theorem 2.4 can be used to provide several new examples of

spaces with the u.a.ﬁ.

3. Spaces of absolutely summing operators.

In this section we let Ip , respectively np., l<p<ew
denote the class of all p-integral operators, respectively the

class of all p-integral operators, respectively the class of all

p.summing operators. For Banach spaces E and F B(E,F) denotes
the space of all bounded operators from E to F .

In [6] the following theorems are proved

3.1 Theorem

(i) Let 1 <q< 2, X qg-concave and B(ll,E*) =T }(ll,E*) , then
. q

T € Eg X « TE Iq(E*,x) « T* € nl(x*,E)

(ii) Let 1< gq<p<2 or 1<g<ew and p=2 or p=q=1.
If X 1is g-concave and E 1is isomorphic to a subspace of an

Lp—space (and E isomorphic to a dual space with the RNP, if

p = 1). Then
T € E@mx « T E€ ﬂq(E*,X) e T € nl(E‘,X) if q<2 .

It is readily verified that if 1 < gq<p< 2 and E is a

subspace of a quotient of an Lp—space, then E satisfies the

conditions in (i) of theorem 3.1.
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Theorem 3.1 is quite vscful sirce it rclates sore classical
—aces to the m-tensor procducts, where it is often easier to com-

—uate norms. As an example we can nertion

-2 Corollary

Let 1 <q<p<2, (e]) the unit vector basis of zp ;

_eap the unit vector basis of Lp. , and let X be g-concave. There

-s a constant k so that if .
n
T = L
jzl ej@xJ € p ® X , then

n
g < nez 1x PPy <xn(m .
1 5" 1

Together with the results in section 2, theorem 3.1 can be

used to prove that certain spaces of absolutely suﬁming operators

have the u.a.p.

3.3 Theorem

(i) Let 1 <gq<p<2 or p=2 and 1<q< 2 and let E be
isomorphic to a subspace of an.Lp-space, F . isomorphic to
a complemented subspace of a g-concave Banach lattice X .
If E and X have the u.a.p., then nl(E*,F) and ﬂl(F*,E)
have the u.a.p. .

(1i) Let E be isomorphic to a subspace of an L,-space, F iso-
morphic to a complemented subspace of an L,-space. If E has

the u.a.p., then ﬂl(E*,P) has the u.a.p.

As a corollary we get

.4 Corollary
let 1 <s<2<r<eo and r +s' uniless s =1,2 . If E

s an -er-space, F an -Bs—space with F complemented in F#**

then T, (E,F) has the u.a.p.

1
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With the methods of [6] wc have not been able to determine

whether "1(1}.£g) has the u.a.p. for the remaining values of r

and s .
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