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NINTH WINTER SCHOOL ON AБSTRACT ANALYSIS (1981) 

Tensor Products of Banach Lattices 

with Applications to the Local Stгucture 

of Banach Lattices anđ Spaces of Absolutely Summing Operators 

N.J. Nielsen 

0. Introduction and notation. 

In this note we shall investigate, when certain tensor products 

of Banach lattices have the uniform approximation property (u.a.p.), 

provided that both factors have this property. We then use these re­

sults to prove that if a superreflective Banach lattice has the 

u.a.p., then the approximating operators can be chosen with controlle 

moduli. The results are also used to prove when spaces of absolutely 

summing operators have the u.a.p. All the results of this note will 

appear in either [2] or [6], to which we refer for further informa­

tion and detailed proofs. 

In the note we shall use the notation and terminology commonly 

used in the theory of Banach lattices as it appears in [3] and [4]. 

Throughout the paper we let E denote a Banach space and X 

a Banach lattice. 

1. The tensor product E®nX 

Let us recall that a linear operator T : E -» X is called order 

bounded, if there exists a z € X , z > 0 so that 
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(1) iTxl < Ilxll 2 f o r a l l x 6 X 

and we def ine the order bounded norm IITil of T by 
m 

llTll̂  « inffllzll | z satisfies (1)} . 

II • llm is a norm on the space (B(E,X) of all order bounded ope­

rators from E to X ,.turning it into a Banach space [7] . 

1.1 Definition 

The m-tensor product E® X is defined to be the closure in 
m 

II -II of E«X in 2>(E*,X) . 
m 

It was proved in [2], theorem 2.2 that if X •• is an order 

continuous Kothe function space on a probability space (ft,o, p) , 

then E® X can be identified in a canonical manner with the space 

X(E) , consisting of all measurable functions f : ft -• E with 

llf(-)llE € X . 

We now wish to comment a little on computation of norms in 

E© X . m 

If ei »e2'* "*'en € E ^nen the function f : 3Rn -* 3R defined 

Ьy 

f
<

t
l'

t
2 *n> -

 n

i\1 V j "
 (t

l V £ ^ 

is a continuous function, homogeneous of degree one. Therefore the 

Krivine calculus of 1-homogeneous expressions in Banach lattices 

(see [4]) gives that f(x,,...,x ) can be given a unique meaning 

as an element in X for all x,,...,x € X , we denote that ele-
n 

ment by II X x.e.ll-p . It can easily be proved that 
j=l J J fc 

n n 
(2) |j I x.e.lL = sup{l I e*(e,)x.l | e* € E* , lle*ll < 1} 

j=l J J L j=l J J 



m 
Hence i f T = Z e ^ x . € E®X , then 

J=l J J 

(3) IITII = II II I x . e j l - I lv . 
m 4=1 J J ь A 

2 . The u . a . p . i n E® X and X . ~':

 m 

^ m • 

Let us recall the following definition 

2.1 Definition 

Let X >, 1 , <p : U -» 3R a function. A Banach space. E is 

said to have the (A,tp) uniform approximation property ((X,<p)-u.a.p. 

if for every n and every n-dimensional subspace F c E there is 

a bounded operator T on E , so that IITil < X , rank(T) <. tp(n) 

and Tx = x for all x € F . 

We shall say that E has the u.a.p., if it has the (A,<p) -u.a.p. 

for some X > 1 and some function <p . Likewise we shall say that 

E has the X-u.a.p., if it has the (A,<p)-u.a.p. for some func­

tion <p . The u.a.p. was originally introduced in [8]. For further 

developments on the subject we refer to [1]- and [5]. 

The following theorem can be found in [2] 

2.2 Theorem 

Let X > 1 . Then the following statements are equivalent 

(i) There is a function <p : U x3R+ -> M , so that for every 

e > 0 and every n-dimensional subspace F c x there is 

an operator T on X , with llTx-xll < c II x II for 

x € F , rank(T) < <p(n,c) and 

n n 
(*) II V lTx,l II < (A+e) II V l x , I II 

j = l J j=l J 

for a l l n-tuples ( x , , x 2 , • . . # x ) e x . 
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(ii) For every finite dimensional Banach space E , E® X has 

the (A+e)-u.a.p. for all e > 0 . 

(iii) The same as (i) with the addition that Tx = x for all 

x € F . 

Sketch of proof % 

(i) •» (ii) . Assume (i), let e > 0 and let E be k-dimensionai; 

we choose an Auerbach basis { e, ,69* • • • 'evJ f o r E . If F <= E® X 

is n-dimensional with Auerbach basis {u, ,u2#. • • ,u } then we can 

find {x^. I 1 <. i < k, i <_ j ± n} so that 

(1) u. = I e . t e , , 1 < j < n 

* N 
Put X, = span (x. ̂  | i <_ k, j <. n} and let (f_J be an e-net 

1 1J r r=l 
in the unit ball B̂ ,* of E* . It is easy to see that for every 
u € E ® X 

m 
1 N * 

(2) llullra < llsup I u(e*) I e*€BE*)ll < ( 1 - e ) " 1 II V | u ( f r ) | II 

According to (i) we can now find an operator T on X so 

that (*) holds for N vectors and 

(3) HTx-xll < e n ^ k " 1 llxll for all x € Xx 

rank(T) < tp(max((N,kn)n k^e) 

For every u € E® X we now g e t the f o l l o w i n g e s t i m a t e o f 

(I®T)u ( I denoting the i d e n t i t y on E ) 

i N * 

(4) ll(I®T)ull = UToull < ( l - e ) ~ A II V | T ( u f ) | l l 
m r=l 

1 N * 1 

< ( X + e ) ( l - e ) " - II v | u ( f r ) | l l < (A+e) ( 1 - e ) " 1 l l u l ^ . 

s o t h a t III«Tll < (A+e) ( l - e ) " 1 . C l e a r ly . 

rank(I&T) < k ip(max (N,kn) ,n G ~ k " e) and u s i n g (2) and t h e f a c t t h a t 
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[u,,...,u }" is an Auerbach basis a computation shows that 

II (I®T)u-u|l < e Hull for all u € F . Hence we have shown that m *~ m 

E® X has the (X+c)-u.a.p. for all c > 0 . 

(ii) «-> (iii) . Let c > 0 and F c X , dim F = n . By assumption 

ln8X has the (X+c)-u.a.p. with some dimension function ip , 

say, and we can therefore find a bounde.d operator S on *,n>®m
x 

so that IISII < X+e , rank(S) < <p(n2) and S, = I_ . 
'l-2w " ' ғ 

Let T denote the group of all isometries of !? onto itself 

and put 

•• 
Sn = (2

n n!)" 1 Z •Cir~1OTv)S(Y«*Iv) . o yeT x X 

Clearly IIS II < X+e , rank(S) <. 2n nl <p(n2) and S . ̂  = I--, . 
° ° °Un®F * 

Since S is invariant under all isometries Y®-"X • Y € ^ there 

is a bounded operator T on X with S = I ®T . Clearly Tip = Ip , 

rank(T) < (n-1) ; 2 n <p(n2) . Further for all x^,...,xn € X , we have 

n n n 
II V | T x , | l l = II Z e , ® T x . l l = IIS f I e , ® x , ) l l < 

j==i J1 j =i i i m . ° j=i i i m 

n n 
(X+e) II Z e.Sx.ll = (X+c) II V |x.|ll 

j=l j i m j=l j 

and (ii) -> (iii) is proved, (iii) «•> (i) is trivial. 

q.e. 

We now introduce the following definition 

2,3 Definition 

Let X 21 1 . X is said to have the (X+)-order u.a.p., if it 

satisfies one of the equivalent conditions of Theorem 2.2. 

It is an open problem, whether the u.a.p. is equivalent to the 

order u.a.p. for general Benach lattices; all known examples of 
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Banach lattices with the u.a.p. has in'fact the positive u.a.p. 

and hence trivially satisfy condition (i) of theorem 2.2. 

The two concepts are equivalent for superreflexive Banach 

lattices, as it is seen from 

2.3 Theorem [2] 

If X is superreflexive with the u.a.p. then X has the 

(1+)-order u.a.p. 

Proof 

Let E be k-dimensional and let e > 0 . We can then find a 

k (depending only on k and X .) so that ^
u
^

m
 <- * MVLU for 

all u € E® m
x • Since X has the (1+e) -u.a.p., [5], all the argu­

ments of (i) «* (ii) in theorem 2.2 can be performed except the esti­

mation of the norm of (I®T) there. Instead we get for all 

u € E© X m 

ll(IST)ull < llToull < k IITII Hull < k ( l + e ) Hull m m — — m 

Hence E®mX has the ( k + e ) - u . a . p . f o r a l l e > 0 . S ince E i s 

f i n i t e dimensional and X i s s u p e r r e f l e x i v e E® X i s s u p e r r e f l e x i v e 

as w e l l and there fore i t has t h e ( 1 + e ) - u . a . p . by [ 5 ] . 

2.4 Problem 

Is the u.a.p. equivalent to the positive u.a.p. for super­

reflexive Banach lattices ? 

Using theorem 2.2 we can prove the following result on the 

u.a.p. of m-tensor products. The proof is quite long and will 

therefore be omitted here. 
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2.5 Theorem [2] 

Let E have the A-u.a.p. If X has the (u+)-order u.a.p., 

then E®m-* has the (Au+e) -u.a.p. for all e > 0 . If X is super-

reflexive and has the u.a.p., then E®mX has the* (A+c)-u.a.p. 

for all e > 0 . 

Theorem 2.4 can be used to provide several new examples of 

spaces with the u.a.p. 

3. Spaces of absolutely summing operators. 

In this section we let 1_ , respectively TT , 1 < p < °° 

denote the class of all p-integral operators, respectively the 

class of all p-integral operators, respectively the class of all 

p.summing operators. For Banach spaces E and F B(E,F) denotes 

the space of all bounded operators from E to F . 

In [6] the following theorems are proved 

3.1 Theorem 

(i) Let 1 < q < 2 , X q-concave and BU-^E*) = TT ̂ (fc^E*) , then 
q 

T € E®mX *» T € I (E*,X) ~ T* € TT^X^E) 

(ii) Let l < q < p < 2 or 1 < q < «> and p = 2 or p = q = 1 . 

If X is q-concave and E is isomorphic to a subspace of an 

L -space (and E isomorphic to a dual space with the RNP, if 

p = 1). Then 

T € E®mX ~ T € n (E*,X) ~ T € n1(E*,X) if q < 2 . 

It is readily verified that if l < q < p < 2 and E is a 

subspace of a quotient of an L -space, then E satisfies the 

conditions in (i) of theorem 3.1. 
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Theorem 3.1 is quite useful sir.ee it relates sore classical 

ces to the m-tensor products, where it is often easier to com­

mute norms. As an example we can mention 

,2 Corollary 

Let 1 < q < p < 2 , (en) the unit vector basis of SL , 

_en) the unit vector basis of £ , , and let X be q-concave. There 

_s a constant k so that if 

n 
•T = I e,©x. € i 3 X , then 

k - 1 n,(T) < ll( r ix.lP)1^!! < k n,(T) . 
x j=l J -1 

Together with the results in section 2, theorem 3.1 can be 

used to prove that certain spaces of absolutely summing operators 

have the u.a.p. 

3.3 Theorem 

(i) Let l < q < p < 2 or p = 2 and 1 < q < 2 and let E be 

isomorphic to a subspace of an L -space, F isomorphic to 

a complemented subspace of a q-concave Banach lattice X . 

If E and X have the u.a.p., then TI^E^F) and n1(F*,E) 

have the u.a.p. 

(ii) Let E be isomorphic to a subspace of an Lj-space, F iso­

morphic to a complemented subspace of an L,-space. If E has 

the u.a.p., then TT,(E*,F) has the u.a.p. 

As a corollary we get 

3.4 Corollary 

Let l < s < 2 < r < « o and r * s ' u n l e s s s = 1 ,2 . I f E 

is an X - s p a c e , F an M - s p a c e wi th F complemented i n F** , 

then n (E,F) has t h e u . a . p . 
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V.'ith the methods of 16] wc have not been able to determine 

whether n {£r,jC?s) has the u.a.p. for the remaining values of r 

and s • 
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