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THE PRECOMPACTNESS - LEMMA 

Klaus Floret 

There is a lemma on precompactness in duality systems of vector 

spaces which appeared in a paper of Grothendieck1s in 1951 and ear

lier in 1951 in an even more general but less memorable form in a 

paper of Kakutani's. Apart from its intrinsic elegance and simpli

city I found it always useful to have this lemma in mind when dea

ling with questions concerning precompactness in locally convex 

spaces. Though it has found its way into some textbooks ([7], II p. 

203 and [4], p. 200 where it is called "le theoreme de precompacite 

reciproque") I observed that it is rarely used, widely unknown, and 

its basic character in the theory of locally convex spaces is not 

acknowledged; I actually think it deserves to be taught in an early 

part of lectures on this topic. In this paper I shall give proofs 

of two known theorems which became rather simple by having this 

lemma at one's disposal, namely P. Dierolf's version of the Orlicz-

Pettis-theorem on vector measures and Randtkefs result on Schwartz-

spaces L(E,F). I am grateful to Eric Thomas who drew my attention 

to the existence of Kakutani•s paper during the conference. 

1. The lemma. Let E be a (real or complex) vector space and C an 

absolutely convex subset of E. Then the Minkowski-gauge-functional 

mc(x) := inf { X > 0 | x e AC } e [0,°°] 

defines a semi-norm on span C = { x € E I
 m

c M < °° } • A subset 

A C E is called m - p r e c o m p a c t, or simply C-precompact, if it is 

precompact in the semi-normed space [cj := (span C, m_) , i. e.: 

For every z > 0 there is a finite set A c span C (which can be 

even chosen to be in A ) such that A c A + eC . If <E..,E2> is a 

duality system of vector spaces (not necessarily separating), 

ACE.. any subset, and 



76 FLORET 

A° := {y € E2 I |<a,y>| < 1 for all a e A) 

the absolute polar of A , then the relation 

пiдo (y) = sup |<a,y>| 
aeA 

holds for all y c E
2 

PRECOMPACTNESS-LEMMA (for dual systems): Let <E.. ,E
2
> be a dual 

system of vector spaces, * A c E
1
 and B C E

2
 . Then the follo

wing statements are equivalent: 

(1) A is B°-precompact 

(2) B is A°-precompact. 

Proof: Every b € B operates on A by the duality bracket < •, • v> 

and it is easily seen that 

B C ^ ( A ^ o ) 

(continuous scalar-valued functions) is uniformly equicontinuous and 

pointwise bounded. The Arzela-Ascoli-theorem implies that B is 

precompact with respect to the uniform convergence on A , i.e. with 

respect to m 0 by the afore-mentioned relation. • 

A function f : E * F -• (K (scalar field) is called totally bounded 

on A X B C E X F if for every e > 0 there are finite partitions 

A = A. u . . . u A and B = B.. u ...uB such that for all i=1,...,n 

and j=1,...,m 

| f(a1,b1) - f(
a
2,b2) | < e 

holds for all a,. ,a2 e A. and b* ,b2 e B. ; in particular: f is 

uniformly bounded. It is immediate that (1) and (2) together im

ply that <•,••> is totally bounded on A x B and vice-versa. So 

(1) and (2) are equivalent to 

(3) The duality bracket <•,••> is totally bounded on A x B . 

If £.. is a cover of E,. by a (E. ,E?) -bounded sets and T„ the 

topology on E2 of uniform convergence on all A £ Z. (and E2 a 

cover of E? of the same sort) then the lemma implies that all 

A € E1 are xy -precompact if and only if all B ̂  Z are T F -
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-precompact. This less esthetic and less sharply focussed conse

quence of the precompactness-lemma was already often used in the 

literature. 

As a first (well-known) application take two dual systems <E..,E2> 

and <F..,F2^ and an operator T:E1 -> F. with an existing dual 

T':F2 -> E2 which means 

<Tx,y> = <x,T'y> 
F1'F2 E1'E2 

for all (x,y) € E x F . If A C E . and B C F , the following 

result holds true: 

COROLLARY: T(A) is B°-precompact if and only if T1(B) is A°-pre

compact . 

For normed spaces E1 and F (and their dual spaces), the unit 

balls A c E1 and B c F2 = F' this is Schauder's theorem. 

Proof: If T(A) is B°-precompact, the precompactness-lemma implies 

that B is (T(A))°-precompact. The definition (by covers!) implies 

that Tf(B) is T'(T(A)°)-precompact and since T'(T(A)°) C A° the 

result follows. An alternative proof uses the new duality bracket on 

E1 X F2 
< X ' ^ E r F 2

 : = < T x ' y ?
F l F 2 = < X' T'y >E 1 fE 2 

By condition (3) of the lemma T(A) being B°-precompact is equiva

lent to <•,••>„ _, being totally bounded on A x B , which in 
E1'F2 

turn is equivalent to T'(B) being A°-precompact. • 

Precompactness of sets of operators - the idea of collective com

pactness from the point of view of the precompactness-lemma was stu

died in [1], including results on the e-product of locally convex 

spaces. 

2. Kakutani's general version of the lemma. The proof of the lemma 

actually did not use any linearity arguments (except for the boun-

dedness of the duality-bracket on A x B ). So the result holds in 

the more general situation of two sets X and Y and a bounded map 

f : X x y + K . Define dx and dy by 
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d (x1#x9) := sup | f (x1 ,y)-f (x9,y) | < °o 

* ycY ' z 

for all x.. ,x9 c X and 

dx(y1fy2) := sup | f (x,y.1)-f (x,y2) | < « 
X£A 

for all y.,y9 e Y then the proof of the following result is just 

the same as the one for the special case of dual systems: 

PRECOMPACTNESS-LEMMA (general form): Let X,Y be sets and 

f:X x y + (K a bounded function. Then the following are equi

valent: 

(1) {X,d ) is a precompact semi-metric space. 

(2) (Y,d ) is a precompact semi-metric space. 

(3) f is totally bounded on X x y , 

It is rather an exercise to find an elementary argument showing that 

(1) implies (3), the other implications then being obvious. Hence 

it is interesting to notice that this lemma easily implies the Ar-

zela-Ascoli-theorem: To see this take a set X with a precompact 

uniformity T and a uniformly equicontinuous, uniformly bounded 

family F = { f(-,y) | y t Y ) of functions on X . Then the iden

tity map 

(X,T) •* (x,d ) 

(d defined as before) is uniformly continuous and whence (X,d ) 

is a precompact semi-metric space; the lemma shows that (Y,d ) is 

precompact which readily means that F is precompact in the normed 

space (E,(X), || • IIoo) • So the general precompactness-lemma is some

how the core of the Arzela-Ascoli-theorem - while the lemma for 

duality systems represents the core of Schauder's theorem. 

3. P. Dierolf's Orlicz-Pettis-theorem. Which are the polar topo

logies T on a dual system <E1,E9> such that every a(E1,E9)-mea

sure is a T-measure? Reformulated (and generalized to arbitrary in

finite index sets I instead of the natural numbers) this is asking 

the following question: Which are the a(E9/E )-bounded sets B c E9 

such that every a(E1,E9)-subfamily summable family (xi'i€T
 i n Ei 

is Cauchy-summable with respect to m 0 • By a nice observation of 
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A. Robertson's the latter is equivalent to the B°-precompactness of 

the set 

{ I x. | J c I finite } 
i€J 1 

Define mQ := { a : I •> K | a(I) finite } C ^ ( D 

*-, := ^(1) 

then it is easy to see that there is a one-to-one correspondence be

tween afE.,E2)-subfamily-summable families (x.). and a(m ,1*) 

- a (E-,E2)-continuous operators T : m •> E.. by 

T(a) := I a(i) x. 
iei 1 

x± := T(e±) 

(e. being the characteristic function of the set {i} ; the family 

(e.). is a(m ,I*)-subfamily-summable). Denoting 

A := { I e. | J c I finite } 
i*J 1 

the problem is reduced to the question: When is . T(A) B°-precompact 

for all T € L((mo,a(mofil1)) f (E1fa(E1/E2))) ? 

This is the setting of the precompactness-lemma (more precisely: the 

corollary mentioned in 1.): T(A) is B°-precompact if and only if 

T1(B) is A°-precompact. But it is immediately checked that m 0 
and the usual norm are equivalent norms on I* . So defining the 

cover 

OP := { B c E2 | V S(B) rel. norm- } 
S e L((E2,a(E2,E1), (l̂  ,o(l^ ,mQ))) compact 

some straightforward arguments show the following result of P. Die-

rolf's-

THEOREM: Let < E.. ,E2> be a dual system and Z a oover of E 2 by 

a(E2,E1)-bounded sets. Then the following statements are equi-
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valent: 

(1) Z c OV 
(2) Every o(E,E2) - sub family-summable family is T^-subfa-

mily-summable. 

Schur's lemma states that norm-compact = o(l*,m )-compact in I , 

so applying the Alaoglu-Bourbaki-theorem it is readily seen that all 

compatible topologies are coarser than T ^ hence satisfy (2). To 

see non-compatible topologies being involved, take a Banach-space G 

and the dual pair <G'fG> . Then, by the theorem, the subfamily-sum-

mable families coincide for a(G',G) and the norm-topology if and 

only if 

L((Gfa(GfG») , (il1,a(£l,mo))) = K(G,i^) 

(compact operators); by the closed graph theorem this is equivalent 

to L(G,£,|) = K(G,l.) - a result of P. Dierolf and Ch. Swartz [3] ; 

the latter condition holds e.g. for G = c or a Grothendieck-
^ o 

space. Actually the arguments used apply in more general situations: 
Take for example G an inductive limit of a sequence of Banach-
spaces G with L(G ,1.) = K(G ,1*) then the subfamily-summable t- n 'n'1 n 1 J 

families are the same for @(G',G) and a(G',G) (use the fact that 

every bounded set in G is in the closure of a bounded set in some 
Gn »• 

4. Randtke's theorem. A locally convex space is called a Schwartz-

space if for every (absolutely convex) neighbourhood U of zero 

there is another one, V , such that V is U-precompact. If 

<E.fE2> is a dual pair and £ a cover of E? by a(E?,E.)-bounded 

sets (they can be assumed to be absolutely convex and a(E2r
E-|)~ 

closed as well) then (Ei)y := (Ei'Ty) i s a Schwartz-space (by the 

precompactness-lemma and the bipolar theorem) if for every A 6 Z 

there is a B 6 E such that A is B-precompact. 

Let E and F be separated locally convex spaces (different from 

{0} ) , and I a cover of E by bounded, closed, absolutely convex 

sets; L„(E,F) denotes L(E,F) , equipped with the topology of uni

form convergence on all elements of E . 

THEOREM: L-(E,F) is a Sohwartz-spaoe if and only if E' and F 

are Sohwartz-spaoes. 
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Proof: Since E' and F can be considered as subspaces of L„(E,F) 

one implication is immediate. Now assume E' and F being Schwartz 

and consider the dual system 

<L(E,F) , E ® F')> . 

The topology of uniform convergence on all A € Z is the topology 

on L(E,F) coming from the cover 

{ r (A ® U°) | A e E , U £ U_(0) } 

of E S> F1 (the closure taken with respect to a(E ® F1, L(E,F)) 

and r points at the absolutely convex hull), Now, given A e Z 

and U €. tt_(0) there are, by assumption,, B € Z and V€ 7J[_(0) 
r r 

such that A is B-precompact and V is U-precompact — equiva-

lently: U° is V°-precompact. It follows that there is a X > 0 

such that A c X B and U° c X V° and that for every e > 0 there 

are finite A c A and C c U° such that 

A c A + eB and U° c C + eV° 
z e 

whence A O U° c A£ ® C£ + (2Xe + e2) B ® V° ; 

this implies that r A ® U° is r B ® \T-precompact. Thus L„(E,F) 

is a Schwartz-space. • 

The proof is quite natural in the sense that it treats L^^F) 

somehow as a. (tensor)-product of E' and F . 
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