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CANONICAL PARTITION THEOREMS FOR FINITE DISTRIBUTIVE LATTICES 

H.J. Prömel and B. Voigt 

§ 0 Introduction 

In 1950 Erdös and Rado proved the following result, known as 'Erdös-Rado-canoni-

zation-lemrna': 

Theorem [ 1 ] Let k,m be positive integers. Then there exists a positive integer 
k 

n such that for eyery coloring Д : [n] -* o> of the k-element subsets of an 

n-element set with infinitely many colors there exists an m-element set X Є [n]
m 

and there exists a 0-1 sequence I = (i
Q
,... »i

k
 i) Є 2 such that two k-element 

subsets Л = {a
Q
,...»a. , } ^ and B = {ЬQ,...,Ь. ,} of X are colored the 

same iff a = b for every v < k with i = 1 . 
v v v 

InformaFly this means that A and B are colored the same iff they agree on the 

subsets given by the sequence I . 

k 
Obviously none of the 2 many equivalence relations given by 0-1 sequences 

I є 2 may be omitted without violating the statement of the theorem. Thus, for 

k 
fixed I Є 2 , the subset A • I of A given by the sequence I is a charac-

teristic data for A . Two k-element subsets A,B of X are colored the same 

iff they have the same characteristic data. 

The Erdös-Rado-canonization-lemma shows that the only characteristic data (in this 

sense) are given by subsets. This generalizes the well-known theorem of Ramsey, 

which states that with respect to two-colorings necessarily I = (3 . In this 

paper we investigate analogous questions for the class of finite distributivę 

lattices, thus generalizing the corresponding partition results, see [3 ] for an 

account on recent partition results for some classes of lattices. 
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As by the Stone representation theorem each distributive lattice may be embedded 

into a Boolean alҙebra (i.e. power-set lattice) it is convenient to consider first 

canonization results for Boolean algebras. Such a theorem has been proven in [4 ]. 

This paper is organized as follows: 

In section 1 we show how Boolean algebras and subalgebras may be represented 

using certain 0-1 matrices. This representation is used in section 2 in order 

to state a canonization lemma for Boolean algebras. In section 3 this result is 

generalized to arbitrary finite distributive lattices which is the main result of 

this paper. The main theorem then is proved in section 4. 

1. How to represent Boolean algebras 

A P(k) - subalgebra tX of P(m) may be given e.g. by k mutually distinct 

nonempty sets A*,...,Af having pairwise the same intersection, i.e. A* n A* = 

A* n A*» for estery 1 < i < j < k . The sets A*,...,A^ form the atoms while 

their common intersection A
Q
 = A? n A*, = A| n...n A? is the minimum. More 

appropriate for our purposes is to represent UL by its minimal element A
Q
 and 

the 'directions'
 A

? ^
A
n " * "

A
k ^ 0 *

 T n u s i s u n i c
l

u e |
y determined from 

(1.1) (AQJAJ,. ..,AK) , where A., n A.. = 0 for eyery 0 < i < j < k and 

A
l'**"

A
k
 a r e

 """^Pty
 ano
* min Aj < min A

2
 < ... < min A. . 

The intended interpretation is that A* = A
Q
 U A- , 1 < i < k , are the atoms 

of TSt . Also, because of the ascending minima condition, to each P(k) - sub-

lattice l5l belongs precisely one (k+1) - tuple (A
Q
,...,A.) satisfying (1.1) . 

The tuple (A
Q
,...,A.) can be represented by a mx (k+1) matrix with 0-1 

entries, where the i.th column, 0 < i < k , contains the characteristic function 

of A
i
 . 

(̂ •2) Notation: "0" denotes the one-way infinite vector consisting of zero 

entries only, i.e. 0 = (0,0,0,...) . For nonnegative integers i the 

expression 'e(i)* denotes the one-way infinite vector with all entries 
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zero except for the i.th entry, which is one, e.q. 

e(0) = (1,0,0,...) ,e(l) = (0,1,0,...) . 

For technical reasons we first consider 'homogeneous' subalgebras, i.e. P(k) -

subalgebras with mutually disjoint atoms: 

(1.3) Definition: For nonnegative integers k < m let B Q Ф consist of all 

mappings A : m -+ {ö,e(0),...,e(k-l)} satisfying: 

(1.3.1) for ewery j < k there exists an i < m such that A(i) = e(j) 

A A A -1 
(1.3.2) u (i) < v (j) for eyery i < j < k , where u (i) = min A (e(i)) . 

Remark: BQ(.) may be interpreted as the set of m x k matrices with zero-one 

entries satisfying: 

- each row contains at most one non-zero entry, 

- each column contains at least one non-zero entry, 

- the columns are ordered according to the first occurences of 1 . 

Namely A є B Q ^ ) ІS the matrix consisting of rows A(0),...,A(m-l) . 

Using the usual multiplication of matrices a composition 

в
oO

 x Б
oФ "

Б
oФ

 is defined b
* 

(1.4) (A • B) (i) = 0 if A(i) = 0 

= B(j) i f A(i) = e(j) , 

where A є B 0 ф and B є B 0 ф . 

(1.5) DefinUloni B j ( ţ ) = Í A Є B 0 ( } J ) |A(0) = e(0)} . 

One easily observes that B, is closed under the composition defined in 

(1.4) , i .e. A є B j ^ ) and B e Б j ф imply that A - B є B ^ j ^ ) . 

з 
(1.6) Example: Consider A ЄB .( 2 ) which is given by the matrix 

[1 0 01 
0 1 0 
0 0 1 
oюj 

Interpret the i.th column of A , i < 3 , as the characteristic function 
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of a set Ai c {0,1,2} , but ignore the first row of A , i.e. 

AQ = 0 , Al = {0,2} , A2 = {1} . 

According to (1.1) the three-tuple (A0,A-,A2) , and thus the matrix A 

from which this is derived, determines a P(2) - subalgebra of P(3) . 

Following the pattern of example (1.6) one immediately observes that each 

A ^--M1?)) determines a P(k) -.subalgebra TJt of P(m) and vice versa to each 

P(k) - subalgebra 'R of P(m) there corresponds precisely one such A e B A . ) 

Moreover for A e B - ^ ) and B e B ^ ' f ) the composite A - B eB^jJ) yields 

the P(k) - subalgebra t i in the P(m) - subalgebra Tfc in a P(n) - algebra. 

Let us mention that the following partition theorem for finite Boolean algebras 

has been established by Graham and Rothschild: 

(1.7) Theorem [ 2 ] Let k < m be nonnegative integers. Then there exists a 

positive integer n such that for every coloring A : B.(IJ) -* 2 of the 

P(k) - subalgebras of a P(n) - algebra with colors 0 and 1 there 

exists a P(m) - subalgebra A CB-f") with all its P(k) - subalgebras 

in the same color, i.e. A(A • B) = A(A • C) for all B,C GBjf'JJ) . 

2. Canonical equivalence relations for B , ^ ) 

In this section we describe the canonical equivalence relations in B.(^) . 

(2.1) Definition: Let k be a nonnegative integer. A family (£.,p.,F.). « 

is a "k-canonical family" iff 

(2.1.1) I < k is a nonnegative integer, 

(2.1.2) 1 < SQ < £., < ... < s^j < £« = 1 + k are positive integers, 

(2.1.3) p. < 5. are nonnegative integers, 
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(2.1.4) Fi e B 0 ( ^ ) , 

(2.1.5) for eyery G e BQ(
 i + 1) there exists H € BQ( J) such that 

(Fi+l'G) (̂ ) = (Fi ' H) U ) for every s<p. . , where i < £ . 

(2.1.6) F.+1 (ci) r
1 e(p.) for every i<£ . 

(2.2) Example: (i) there exist precisely two O-canonical families, 

viz. (1,0,(0)) and (1,1,(e(0))) . 

(ii) there exist precisely 10 1-canonical families; 

viz. (2,2,(e(0),e(l))) ; (2,l,(0,e(0))) , (2,1,(e(0),0)) , 

(2,l,(e(0),e(0))) , (2,o!(0,0)) , 

these being the 5 1-canonical families with I = 0 , and 

((1,0,(0)) , (2,0,(0,0))) , ((1,1,(e(0))) , (2,l,(e(0),0))) , 

((1,1,(e(0))) , (2,l,(e(0),e(0)))) , ((1,1,(e(0))) , (2,l,(0,e(0)))) , 

1(1,1,(e(0))) , (2,0,(0,0)), 

these being the 5 1-canonical families with I = 1 . 

(2.3) Notation: Let A e B W ? ) and £ with 1 < ^ < k +1 be a positive inte-
A — — 

ger. Then A^ €B-( U [y) , where u (k+1) = m , is the restriction of A 

to u A U ) , i.e. A*(i) = A(i) for every i < y
A U ) . 

(2.4) Theorem [ 4 1 Let k < m be nonnegative integers. Then there exists a 

nonnegative integer n such that for every coloring A : B.(. ) -> w of 

the P(k) - subalgebras of a P(n) - algebra with an arbitrary number of 

colors there exists a P(m) - subalgebra A £ B,(") and a k-canonical 

family (^ ,Pi J^)^ such that two P(k) - subalgebras B,C e B j ^ ) of 

A are colored the same (i.e. A(A • B) = A(A-C)) iff B?i • F. = C i • Fi 

for every i < I . 

This result is best possible, as the partitions given by k-canonical families 

are hereditary under subobjects, viz. 

(2.5) Theorem [ 4 ] Let k be a nonnegative integer and let (£.. ,pi J ^ ) ^ be 

a k-canonical family. 
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Let A : B-,(£) -> c*) be a coloring such that A(B) = A(C) iff 

B 1 • F.' = C 1 • F. for every i < £ . 

Then for every A eB^JJ) and B,C e B - ^ ) it follows that 

A(A • B) = A(A • C) iff B^1 • F. = C^' • F. for every i < I . 

3. Canonical equivalence relations for finite distributive lattices 

(3.1) Notation: D denotes the class of finite distributive lattices. The 

elements of D are denoted by capital letters A,B,C,... . The expression 
A 

'D(g)" denotes the set of B - sublattices of A . In particular if 

A = P(m) and B = P(k) we use the representation from section 2 and by 

A m 
abuse of language D Q = Bj(p . 

The following well-known observations enable us to determine canonical equiva­

lence relations for finite distributive lattices. 

(3.2) Observation* For every M e D there exists a nonnegative integer n such 

that M may be embedded into P(n) , i.e. D(P^) J 0 . 

The smallest such n is called the "rank of M" and is abbreviated a's rk M , 

also rk M is the length of a maximal chain in M . 

(3.3) Observation; Let M e D I ^ ' ) be an M-sublattice of p(n) . Then there 

exists precisely one P(rk M) - sublattice A e D ( p ^
n ' ) containing M . 

Let us denote this P(rk M) - subalgebra, which envelops M , by Env M . 

The last observation makes it possible to associate a certain number, viz. 

typ M , to each M-sublattice M eB(P^) . 

Consider M € D( n!J. ) . Of course, M determines a subset of Env M . Using 

e.g. the lexicographic ordering yields a total ordering on D( « ) , say 

D( "M ) = { Mo"', , M 1* * wnere tne M - sublattices are enumerated monotonously. 
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(3.4) Notation: typ M = v iff M = M 
v 

(3.5) Example: Let M be the three-element chain. Then rk M = 2 . Consider a 

three-element chain X c Y c Z in P(n) . Then Env ( X c Y c Z ) has 

atoms Y and X U (Z\Y) (see diagram 1) . Thus typ (X c Y c Z) = 0 iff 

min Y\X < min Z\Y and typ ( X c Y c Z ) = 1 otherwise. 

X u (Z^Y) 

These observations can be used in order to show that finite Boolean algebras are 

the only finite distributive lattices which have the partition property, see [3 ]. 

In order to give a precise formulation of the canonical partition theorem for 

finite distributive lattices let us adopt the following convention: 

(3.6) Convention: Let A C B ^ ) be a P(m) - sublattice of P(n) and let 

M E D ( P ' m ' ) be an M-sublattice of P(m) , then A - M e (P^n)) denotes 

the corresponding M-sublattice of A . 

Now the main result of this paper can be stated in the following way: 

(3.7) Theorem: Let M e D be a finite distributive lattice and say 

Pfrk M^ 
| D( v

 M )I = x • Then for every integer m there exists a positive 

integer n such that for every coloring A : D( An') -> w of the M - sub-

lattices of P(n) with arbitrary many colors there exists a P(m) -subal-

gebra A e B- (n) , there exists an equivalence relation IT on {0,...,x-l> 

and for each v < x there exists a (rk M) - canonical family 

(SJJ.P^.FV). v such that each two M - sublattices M , M' € D(?^) of A 

are colored the same (i.e. A(A • M) = A(A • M')) iff 

a = typ M and 3 = typ M' satisfy 

a w 3 (mod IT) and 
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( ( E n v M ) 5 i - F « ) . ^ a = ((Env M 1 )^ • F * ) . ^ . 

Informally this' result may be stated in the following way: 

If M is a Boolean algebra, then the canonical equivalence relations are given 

by k-canonical families (E. ,p. sF.). - as'stated in theorem 2.5 . 

Here the simplest case are k-canonical families Un'Pn'Fp) , i.e. I = 0 . Re­

call that £0 = 1 + k by (2.1.2) . Then two P(k) - subalgebras B and C of a 

P(m) , i .e. B,C € B ^ ) are equivalent iff B • FQ = C • FQ . But as FQ e B Q(
1 + k) 

this means that B and C are equivalent iff they have the same (homogenous) 

FQ - subalgebra, where also B and C are interpreted as homogeneous P(l+k) -

1 +m 
subalgebras of P(I-HTI) , i.e. B,C £-3Q(J+|^) • Compare (1.5) and the example (1.6). 

The next simplest case is represented by k-canonical families (£.,p.,F.). , , 

i.e. I = 1 . A necessary condition for B,C €B,(^) to be equivalent then is 

B C 
that u U 0 ) = u ( O = v , recall that again £, = 1 + k . By definition (1.3) 

the first v rows of B and C , i.e. 

B^° = (B(0),...,B(v-l)) and 

C^° = (C(0),...,C(v-l)) 

represent PU Q-1) - subalgebras of P(v) , viz. B ° , CC° G BQ(
1+V) 

m
ч modul o The next necessary condition for B,C €B,(.) to be equivalent 

(Cj»P.j>F.). , then is that B ° and C ° are equivalent modulo U 0 > P 0 > F 0 ) > 

viz. they have to have the same FQ - subalgebra. Finally the third necessary con­

dition is that B and C have the same F, - subalgebra. 

All these three necessary conditions put together yield a sufficient condition 

for the equivalence modulo (£.,p.,F.). , . 

Observe that the subspaces F~ and F, are linked by (2.1.5) and (2.1.6) . 

Generally speaking B,C e B W ? ) are equivalent modulo (̂ . ,p- » F . ) . < « iff 

u (£.) = u (£.:) for ewery i <l and the initial rows B 1 resp. C i - inter-

preted as elements of BQ(
 y
£ ̂ i') - have the same F. -subalgebras. 

Thus the sequence (B 1 ' F - ) . - of these subalgebras gives the characteristic 
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data of B with respect to (^.,P-,F.). ̂ « and two P(k.) - subalgebras B and C 

of P(m) are equivalent iff they share the same characteristic data. 

If the distributive lattice M is not a Boolean algebra, say 

( ^rM ') = {MQ,...,M } where x > - » then by observation (3.3) and theorem 

(2.5) to each type v < x there belongs a certain k-canonical family 

/,_V V r-Vx 

U i , P i ' i}i<£v ' 
Now two M - sublattices of the same type v are colored the same iff they share 

the same characteristic data. 

But what happens with M - sublattices M and M' of different type? Note that 

even if the k-canonical families associated with typ M resp. with typ M' are 

different, the characteristic data of M and M' can be the same. Thus we can 

color M and M' with the same color iff they have the same characteristic data, 

but of course we need not. The theorem states that precisely one of these two 

possibilities occurs: either M and M1 are colored the same iff they have the 

same characteristic data (i.e. typ M ^ typ M' (mod -n-)) or M and M' are 

colored differently in spite of the fact that they could have the same character­

istic data (i.e. typ M ^ typ M' (mod -n-)) . 

Finally, from the preceding remarks it should be obvious, that none of the 

equivalence relations mentioned in theorem (3.7) may be omitted without violating 

the assertion of (3.7) . 

4. Proof of theorem (3.7) 

For the remainder of this section let M e D be a fixed distributive lattice. 

Let x = I ID(^k^) | be the number of M - sublattices of P(k) , say 

E(Pi]^) = {Mn,...,M ,} , where k = rk M . 
x N ' U x-1 

(4.1) Lemma: Let v < x • For every m there exists an n such that for every 

coloring A : D( ^) -> to there exists a P(m) - subalgebra A € B-(^) 
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and there exists a (rk M) - canonical family (^.»p.,F-).^« such that 

each two - M - sublattices M,M" € D( w') of type v are colored the 

same (i.e. A(A • M) = A(A • M')) iff 

(Env M)5i • F.. = (Env M')*1' • Fi .for eyery i < I . 

Proof: This is a straightforward application of theorem (2.4) . Choose n accor­

ding to k = rk M and m . Given the coloring A : D( Ln') -> o> consider the 

coloring A* : B j L n
M ) -• w which is defined as A*(A) = A(A • M ) . n 

Applying Lemma (4.1) for eyery i < x yields the following corollary: 

(4.2) Corollary: For eyery m there exists an n such that for eyery coloring 

A : B(P(M
n)) -• co there exists a P(m) - subalgebra A e B, (n) and for 

eyery v<\ there exists a (rk M) - canonical family U ^ - P ^ F V ) 
i<x 

such that each two M - sublattices M , M' € D ( P ^ ) of type v are 

colored the same (i.e. A(A • M) = A(A • M')) iff 

(Env M) i • F^ = (Env M') n • FV for e\/ery i < lv . 

Let A : B,(.) -* o be a coloring and let (r. ,p. ,F.). „ be a k-canonical 

family. We say that A is of fibre-type (£•,p•J .) .» provided that each two 

P(k) - subalgebras B,C € Bj(n) are colored the same iff B ^ • F. = C n" • Fi for 

eyery i < I . 

(4.3) Lemma: Let (£.. ,pi ,F..). « and (£.,p.,F..). - be two k-canonical 

families, and let m > 2k be a positive integer. Then there exists a 

positive integer n such that for eyery two colorings 

Al : BlO "* w of fibre-^Pe Ui»pi,FVi<£ 
and 

A 2 i B ^ ^ - c o of fibre-type (£. ,p. ,F.) ^ 

there exists an A ^Bj( n) such that 
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?k ?V 
H = HM '{(B.CjeB^^) xB-^plA^AMB) = A2(AMC)} 

is independent of M , i.e. HM = Ĥ  for eyery M,M eBjj^) . 

Additionally H satisfies: 

Either H = 0 or 

H = {(B,C)eBl(
2
k
k) " B ^ K B ^ - F ^ ^ - ^ . ^ ) . ^ } . 

Proof: Applying (1.7) we may r e s t r i c t our- considerations to colorings 

A l : BlO "* " of f1bre-type U r
p i > F i ' i <£ 

and 

A 2 : B l ( k ) "* w o f f i b r e - t y p e ( ^ i ' P i ' ^ ) . ^ 

such that 

(4.3.1) H = HM = Ĥ j for every M . M e B - ^ ) , 

where HM = {(B,C) e B ^ ) x B j ( | k ) ^ ( M • B) = A2(M-C)} 

and such that ei ther 

?v ?v 
(4.3.2) for eyery B e B ^ " ) there exists a C e B ^ p with (B,C) € H 

or 

?V ?v 
(4.3.3) for eyery B G B ^ k ) holds (B,C) C H for eyery C e B ^ p . 

If (4.3.3) is valid then obviously H = 0 . Thus let us assume that (4.3.1) and 

(4.3.2) are valid. First we show that 

He{(B,C) C B - ^ ) x B - ^ J K B ^ - F . ) . ^ = (C€i . F.) .^} . 

Assume to the contrary that 

(4.3.4) (B^ - F . ) . ^ / (CCi - F . ) ^ for some (B,C) € H . 

Let i < min(£,£) be maximal such that B v • F = C v • F for eyery v < i . 

Say that yB(?i) < y
C(^.) . By (4.3.4) and (2.1.6) then one of the following 

three alternatives (4.3.5) , (4.3.6) or (4.3.7) is valid: 

(4.3.5) (BCi • F.) U ) / ( C ^ - F ^ (0 for some c<yB(?i) , 
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(4.3.6) y B ( c i ) < y C ( C i ) and (Z^ • F.) (yB (C i ) ) * e(p.) , 

(4.3.7) ( B 5 i + 1 - F . + 1 ) ( 0 t ( C ^ ' - F . ) ( 0 for some C<yB (C i ) • 

We show that each of these three cases yields a contradiction. 

For technical convenience let us assume that all matrices have a (-l)-st row, 

namely "0". Analogously let e(-l) = 0 . 

Let us consider first (4.3.5);. 

Let £ be minimal satisfying (4.3.5) and say that 

0 = min(BCi • F..)"1 ((B^1 • F.) U ) ) < £ > where 0 = -1 if 

(B*i -F.) (0 = 0 . 

The case min(C i • F.)~ ((C i • F.) (£)) < £ can be handled analogously. 

Let 

M = (e(0),e(l),...,e(yB(^i)-l),e(O,e(y
B(ci)),e(y

B(ci)+l),...,e(2k), 

e(2k),...,e(2k)) e B . ^ ) 

and let 

M = (e(0),e(l),...,e(yB(^.)-l),e(o),e(yB(^)),e(yB(^.) + l),...,e(2k), 

e(2k),...,e(2k)) бBjtJ) 

As (B,C) € H it follows that 

(4.3.8) Aj(M • B) = A2(M • C) and A ^ M • B) = A2(M • C) 

As (B^i • F.) ( 0 = (B^i • F.) (0) , but (CCi • F.) (O i (C^1 • F.) (0) 

i t fol lows that 

( M - B ) ^ . F = (M • B ) ^ • Fv f o r every v<l , but 

(M • C)*i • F. M M * C)*1' • F. , v i z . ((M • C)^' • F.) (uB(e.)) * 

( (M-C) * i ( y B ( ^ . ) ) . 

Since A^ is of f ib re- type ( f . , p i , F i ) . « and A2 is of f ib re- type 

U - , P , - , F . ) . i t fol lows that 
1 n n \<l 
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(4.3.9) Aj(M • B) = Aj(M • B) , but A2(M • C) t A2(M • C) 

contradicting (4.3.8) . 

Next let us consider (4.3.6): 

We can assume that 

(4.3.10) (BCi -F.) (c) = (C5i -F.) U) for every 5<yB(c.) . 

Let 0 = min(C5i - F . ) " 1 ((C^* -F.) (yB(^))) . 

From (4.3.10) it follows that 0 < yB(£.) 

Let 

M = (e(0),e(l),...,e(yB(ci)-l),e(y
B(ci)),e(y

B(ci)),e(y
B(^i) + l),...,e(2k), 

e(2k),...,e(2k)) e B - J ^ ) 

and let 

M = (e(0),e(l),...,e(yB(ci)-l),e(e),e(y
B(^)),e(yB(^.) + l),...,e(2k), 

e(2k),...,e(2k)) eB-J^) . 

Again from (B,C) € H it follows that 

(4.3.11) AX(M • B) = A2(M • C) and Aj(M • B) = A2(M • C) . 

AS yM'B(yB(^)) + yM'B(yB(Ci)) but ( C * W . ) (0) = ( C * W . ) ( y 8 ^ ) ) , it 

follows that 

(4.3.12) AX(M • B) + AX(M • B) , but A2(M • C) = A2(M ' C) 

which again contradicts (4.3.8) . 

Finally we consider (4.3.7): 

We can assume that (4.3.10) holds and that 

(C^'-F.) (yB(^.)) = e(Pi) . 

Let £ be minimal satisfying (4.3.7) . Let 

0 = min(B C i+l.F i + 1)"
1 ((B*i+1 • F.+1) (0) . 

From (2.1.5) it follows particularly that 0 < £ . 
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Let 

M = ( e ( 0 ) , e ( l ) , . . . , e ( u B ( c i ) ) , e ( O J e ( y
B ( ^ ) + l ) , . . . , e ( 2 k ) , 

e (2k ) , . . . , e (2k ) ) E B j t " ) 

and l e t 

M = ( e ( O ) , e ( l ) , . . . , e ( y B ( ^ . ) ) , e ( 0 ) , e ( y B ( ? i ) + l ) , . . . , e ( 2 k ) , 

e (2k ) , . . . , e (2k ) ) e B ^ ^ ) . 

Again it follows easily that 

AX(M • B) = A2(M • C) and A ^ M • B) = A2(M • C) 

AX(M • B) = An(M • B) and A2(M • C) ?- A2(M • C) 

which is a contradiction. 

Finally from (4.3.2) it follows then that 

{(B,C) e B - ^ ) x B ^ ^ J K B ^ ' -F.).^-- (CCi • F . K ^ l c f f . 

Applying Lemma (4.3) (*j - times yields the following corollary: 

(4.4) Corollary: For eMery m > 2k there exists an n such that for eMery 

family ((£^-P^\FV) J V < X ) of k-canonical families and eMery family 
1 ' ' i<£ 

(Av : E ^ ) -co | v < x ) 

of color ings, where A is of f ib re- type U ^ . P ^ . F V ) , 
V 1 1 1 -j<£ 

there exists an A C--MI!) such that for eMery v < v' < x the sets 

H(v.v') = HM(v,v') = {(B,C) G B ^ ^ J l A ^ A M B ) = A ^ A M C ) } , 

where M CB-fJ1.) > are independent of M and satisfy: 

either rL(v,v') = 0 or 

HM(v.v') = {(B.C) eB l (
2
k
k) x B l (

2
k
k ) | ( B C i . F p . ^ v = ( C ^ - F V ' ) ^ } 

Now theorem (3.7) follows from (4.2) and (4.4) using the fact that for m > 2k 

each two P(k) - subalgebras of P(m) are contained in some P(2k) - subalgebra 

of P(m) . 
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