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ON THE REPRESENTATION OF NORM ATTAINING POSITIVE 

OPERATORS ON Lp[o,l] 

Ryszard Grz^slewicz 

Let ([0,l],$,m) denote the unit interval, the Lebesgue 
measurable sets, and Lebesgue measure, respectively. We denote by 
Lp » 1^P-£oo $ the space of all real-valued Lebesgue measurable 
functions on [0,1] whose absolute p-th power are integrable . 
By <L(LP,1 ) we denote the Banach space of all bounded linear 
operators from Lp into Lr . An operator T is said to be 
positive, T^O if Tf>, 0 for all f^O. 

A representation for operators on L has been established by 
Kantorovic* and Vulikh [5] . Using this result Ryff [8] 
presented the representation theorem for doubly stochastic operators. 

An operator T € £(Lp,Lr) is called a pseudo-integral 

operator if there is a map y * /l of [0,1] into the space 
of bounded Borel measures on [0,1] such that 
1° if B €•& and m(B)=0 ,then /A.-y(B)--0 a.e. 
2° for every B € 1ft ,the functions y—• /OB) , y —> \jx | (B} 

are Borel measurable 
3° Lp C L1 ( I/O) for almost every y€[0,f] 

and 
(Tf)cy) = \ f(x) /ty(dx) a.e. 

for every f Lp . An operator T is a pseudo-integral operator 

if and only if T is order-continuous i.e. 0^fn ^ f £ L
p and 

fn—• 0 a.e. implies ^jT"* ° a*e» • T h e pseudo-integral 

operators form a band ( order-closed ideal ) in the space of order 

-bounded operators. If T 6 £,lLp,Lr) is positive, then T is 

a pseudo-integral operator ( see Sourour [12] ) . 

An operator T € JL(Lp,Lr) is called an integral operator, if 

there exists a measurable function T(x,y) such that 

lTf)(y) = \ T(x,y) f(x) dx a.e. 

for every f6Lp. An operator T € Jt(Lp,Lr) is an integral operator 
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if and only if T maps order intervals into equimeasurable sets 

( Schachermayer [10], see also Schep [11]) . We recall that a set 

H C L is called equimeasurable if for all £ > 0 there exists 

X1 with m I [0,1]\ X1 ) < 6 such that {lx h: h € H ] is 

a relatively compact subset of L°° (cf.[2]) . 

The support of positive operator T £ JL(Lp,Lr) , supp T , is 

a maximal set A C [0,1] ( modulo zero Lebesgue measure sets ) such 

that T1AC =0 ( cf. [3]). 

Let 

Jf = [T 6X(Lp,Lr): T:>0, T attains its norm at some feLp with 
suppf=supp T j . 

Thus JV is the set of all positive operators T such that there 

exists a function f of full support and T attains its norm 

at f. If 1<r^p<<-3° ,then the set JT is norm dense in the 

positive part of X(Lp,Lr) ([4],Proposition 2 ) . The proof of 

this fact is a modification of Lindenstrauss's result [ 7] 

The purpose of this paper is to present a representation theo

rem for positive operators which attain their norm at a function 

of full support i.e. for operators from the set JC . For our 

aim we carry Ryff*s representation of doubly stochastic operators 

to the case of positive norm attaining operators. The same method 

was been used to obtain certain properties of positive norm 

attaining operators on Lp ( [ 3]) and the characterization of ext

reme positive contractions on l£ ([4]) . 

We denote 

MCT) ={f : UTf II = llTll H f II ] . 
Note tha t i f T^O , then f€M(T) implies |f| € MIT) , and the 
set M(T) form a l i n e a r subspnce of LP i f 1 < r ^ p ^ °° ( [ 3 ] ) . 

We define Let 0 ś f € L P , O^g € L Г 
be such t h a t Иfll--||g|! = 1 . l 

T : [ 0 , 1 ] > [0,1] and Б : І 0 , 1 ] — * [0,1] by 

t (x) -* \ * f P dm 
J 0 

S(x) = \ g Г dm 
JO 

The restricted mappings X |
g u p p f

 and * |
S
upp g

 a r e 

increasing and onto [0,1] ,thus invertible ( modulo null sets ) . 

Theorem. Let 1<r£p<oo . A positive operator T € JL(Lp,Lr) 

with HTIM , supp T =[0,1] is in Jf if and only if T admits 

a representation 
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_ J _ _ (
1 

5
Г
~
1
<У) dy ) 

(*) ITҺПЛ-

L(y,x) h(x)dx y € supp g 

0 

УІ supp g 

where f€M(T) is such that IIf 11=1 , f*>0 , supp f=[0,l], g=Tf , 

the kernel L is measurable and satisfies the following 

conditions: 

a/. L(0,x)=0 

b/. L(y1fO 4 ^L(y9,- ) if y, < y2 

C/. 

d/. 

L(yr') 4 L(y2,- ) 
L(1,x)= fp~1(x) 

\ L(y,x) f (x) dx = £(y) 
JO 

e'* \ L(6~(s),x)h(x)dx as a function of s € supp g 
J0 

is absolutely continuous for every h € Lp 

Proof. Let T € Jf with |\T\\=1 , T > 0 . Let f £M(T) be such 

that ||fl = 1 , f>0 , supp f=[0,l]. Put g=Tf. Note that ||Tf| =1 , 

Tf>0 , T*(Tf)p~1 = fp~1 and (Tf)r~1 €. M(T* ) (see [3] ). 

The operator 

P = V T U 

where (U h)(x)= f(x)h ( «t(x)) ,h6LP 

hr U l , k ( S ~1is)) VCTT 

(V k)ls)= — 2 ,k€L 

g ( E "'(s)) 
is doubly stochastic (i.e. P £0 , P1=1 , P*1=1 ) . The operator 
U is an isometry on Lp and V is a coisometry on Lr ( see [6j). 

By the result of Ryff [&] we have 
(Ph)(s) = _1_ \ K(s,t) h(t) dt 

dt ^0 

where K is measurable on [0,1]*[0,1] and satisfies : 

1/. K(0,t) =0 
'• \ K (• ,t) h(t)dt is absolutely continuous for 

Jo 
every h € L 

3/ . 
J0 

s = \ K(s,t) dt 

4/. K(sr-) ^ K(s2,-) if s1 < s, 

5/. K(1,t) =1 

Using the above representation we obtain 
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~T~\ rI7 \ K(6T(y> , ¥(x)) fp~1(x)h(x) dx 

g ~!<y) y Jo 
(Th) (y) = < ye supp g 

0 y ̂  supp g 

and we get (x) putting l(y,x) = K ( C ( y) , T-t x) ) fp~1 (x) . 

Clearly 1/. , 4/. , and 5/. implies a/. , b/. , and c/. 

Using 4/. we get 
P L (y,x) fu) dx= XKlEty), cT(x))fp(x) dx= f K ( S( y) ,t) dt« 

& ( y ) . I f h £ Lp , then by Holde r ' s i nequa l i t y , 
h {X , C t )^ £ L1 . Hence by 3 / . a funct ion 
f ( X*"1 Ct)) 

£(s)= 1 L l S ~ 1 ( s ) ,x)h(x) dx =| K(s , T(x)) f p - 1 ( x ) h(x) dx = 

K(s,t) ———-. dt is absolutely continuous. 
0 f C^-Ht)) [ 
Now let 0£f €L P , 0<geL r be such that llfll=llgll = 1 , and 

suppose a measurable function L(y,x) satisfies conditions 

a/. e/. . It is not diffcult to see that a function K(s,t) 

such that L (<£,*) = K ( S(y) , <* ix) )fp~1 (x) satisfies 1/. 5/. 

and that the operator (Ph) (s) = ~ C K(s,t) h(t) dt is doubly 
stochastic. We define T by (x) . 

Let h 6 Lp . We have II Th U r 

r 

\l-cr-— -j-. \ L(y,x) h(x)dx V gr(y) dy = 
)lgrCy) d? 1 0 1 

supp g 

\ - F — d£ \ K l^(y), t(x)) fp-1lx)h(x)dx|r gr(y) dy = 
J I g (J) y ) 0 I 
?p g 

\ X? J K(s, TTCx)) fp"1Cx) h(x)dx ds = 
JO ' a s supp f ' 

supp g 
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u)) r 
dt-\1 [KU.t) - KlO.t)] I *<**"? " » T dt- P I - * ( * " ] " ) ) 

J0
 u I f C t ' 1 ct» I ) 0 | f t z~\t)) 

^ | h c x ) | r fp-r
(x)dx .4ihij Hfttp-r = iihii^ 

The first inequality follows from properties of doubly stochastic 

operators. The second inequality is a consequence of Holder's 

inequality. Hence TtJ[(LP,Lr) and IITIU1. Clearly Tf=g , «Tfl=1 , 

f£ M(T). 

Remark. It is- easy to see that, we can write an analogous 

theorem without the assumption supp T=[o,l] . 

A doubly stochastic operator P can be represented by 

(Ph)(s)= \ h(t) p(s,dt) i> 
where a function p ( * , ' ) : [ o , l ] ) ( 6 " ^ (R+ sat isf ies 

ti1) for each s€[0,l] p(s,*) is a probability measure on fc 

Iii1) for each Bcft p(s,B) is a measurable function of s 

(iii ') P p(s,B) d x = m ( B ) > B £ fc> 
Jo 

( see, e.g. [1 ] ) . 
If U r i < p < o o , TCJT' with WTIU1 , T> 0 , then there exist 

0 £ f 6 L p and 0 £ g 6 Lr such that llftt=ttg\\=1 , f^^.(T), g=Tf , 

supp T = supp f . Using arguments similar to those in the proof 

of Theorem we obtain 

(xx) (Th)(y)= \ f g tfy.dbO 
supp f 

where a function q(x,B) : [0, l] X % —y JR ̂  sat isf ies the 

conditions: 

(i) for each ye [0,1] q(y.*) is a probability measure on 

(i i) for each B 6 *fi> q(y,B) is a measurable function of y 

( i i i ) \ g r(y) q(y,B) dy = \ fp(x) dx 

Jo J 

Conversely, if we have f € Lp , g € L r with HflU\\g\l = 1 , f^0 , 

g^O and a function q(x,B) satisfies (i)—(iii) then the 

formula Ixx) define T e JT such that ll TIU1 , f e M (T) , 

supp T « supp f 
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Let jj^% \r be probability measures on ([°»1] » 33 ) . We say 

that a measure X defined on ([0, l] X [o, l] ,8>®8)is doubly 

stochastic with respect to t̂t and / if 

A(AX[0,1])= r(A) and A([o,l] X B) = ^(B) 

A,B€ft. The relation 

M A * B ) = I 1A P1B dm 

determines a one-to-one correspondence between the set of all 

doubly stochastic measures with respect to m and m ( £1^ , see 

also [9]). Therefore , analogously, for every T e JT with ||T|| = 1 

the formula 

(xxx) M U B ) = \ 1A g
r~1 T(1Bf ) dy 

defines a doubly stochastic measure with respect to JJ» and V , 

where f€M(T) ,llf 11 = 1, f)0 , supp f = supp T , g=Tf , d/JL=fpdm, 

dV̂ rg1" dm . 
Conversely, let 0 £ f £LP , 0 £ g e Lr with nf\l = |lgll = 1 . We 

D r 

define probability measures A. , V* by dM= f* dm , dv* = g dm . 

Let A be a doubly stochastic measure with respect to /c and V . 

Then (xxx ) determines an operator T in Jf such that \l T|| = 1 , 

f€M(T), supp T = supp f . 
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