USA 11

Jaroslav Nešetřil; Svatopluk Poljak; Daniel Turzík
 Some remarks on Ramsey matroids

In: Zdeněk Frolík (ed.): Proceedings of the 11th Winter School on Abstract Analysis. Circolo Matematico di Palermo, Palermo, 1984. Rendiconti del Circolo Matematico di Palermo, Serie II, Supplements No. 3. pp. [185]--189.

Persistent URL: http://dml.cz/dmlcz/701309

Terms of use:

© Circolo Matematico di Palermo, 1984
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

```
Jaroslav Nešetřil, Svatopluk Poljak, Daniel Turzik
```

The purpose of this note is to summarize some of the results which are going to appear in [2] and to complement these results by stating some open problems and related consequences:

1. The following is the main result of [1]:

Theorem 1.1: For every simple matroid $M=M(X)$ and for every positive integer k there exists a matroid $N=N(Y)$ such that for every partition $Y=Y_{1} U \ldots U Y_{k}$ there exists a matroid $M^{\prime}=M^{\prime}\left(X^{\prime}\right), M^{\prime} \simeq M$, such that $X^{\prime} \subseteq Y_{i}$ for some Y_{i}.

The statement of 1.1 may be abbreviated by saying that matroids have singletonRamsey property. For many classes of structures (mainly of combinatorial type, such as graphs etc.) the existence of a singleton-Ramsey property may be established by simple means. The proof of 1.1 given in [1] (and also in [2]) is not of such simplicity.

Particularly, the following is not known:

Problem 1.2: Denote by $F(M)$ the minimal size of a matroid N which has the property stated in 1.1 . Is it true that there exists a constant α such that $F(M) \leq|X|^{\alpha}$ for every matroid $M=M(X)$?

It is also not known which classes of matroids have singleton-Ramsey property.
2. The following is the main result of [2]:

Theorem 2.1: For every simple matroid $M=M(X)$ and for every positive integer k there exists a matroid $N=N(Y)$ such that for every partition $a_{i} U \ldots U a_{k}$ of the set of all lines of N with exactly 2 elements there exists a matroid $M^{\prime}=M^{\prime}\left(X^{\prime}\right), M^{\prime} \simeq M$, such that all 2-point lines of M^{\prime} are in one of the classes of the partition.

The statement of 2.1 may be summarized by saying that matroids have edge-Ramsey property (an edge meaning a flat with 2 independent points).

A construction related to 2.1 is even less effective and therefore it is, at present, needless to state an analogy of 1.2 .

However, the following seems to be an interesting problem:

Problem 2.2: Which classes of matroids have edge-Ramsey property?

Perhaps this problem will have mostly a negative answer. E.g. it may be seen that the class of all graphical matroids does not have edge-Ramsey property. The same is true for transversal matroids.

The following problem is related to the existence of edge-Ramsey matroids and it seems to require a new technique:

Problem 2.3: Given a matroid $M=M(X)$ does there exists a matroid $N=N(Y)$ with the following property:

For every partition $a_{1} U \ldots U a_{n}$ (n is a positive integer) of the set of all lines of N with exactly 2 points there exists a matroid $M^{\prime}=M^{\prime}\left(X^{\prime}\right)$, $M^{\prime} \simeq M$, such that the partition of all 2-point lines restricted to M^{\prime} is canonical.

Here we say that an equivalence \sim on the set of all 2-1ines of $M=M(X)$ is canonical if there exists an ordering \leq of X such that one of the following possibilities holds for all 2-1ines $x y, x^{\prime} y^{\prime}$ with $x<y, x^{\prime}<y^{\prime}$:

1. $x y \sim x^{\prime} y^{\prime}$ iff $x=x^{\prime}, y=y^{\prime}$
2. $x y \sim x^{\prime} y^{\prime}$ iff $x=x^{\prime}$
3. $x y \sim x^{\prime} y^{\prime}$ iff $y=y^{\prime}$
4. $x y \sim x^{\prime} y^{\prime}$

A positive solution to this problem would provide both an analogy of Erdös-Rado canonization lemma for matroids and a strenghtening of the selective property of matroids proved in [1].
3. The above theorems were established by means of amalgams of matroids along a special set systems. The method of the proof has some further consequences.

For example the following may be proved using the basic construction given in [1], [2]:

Given a matroid $M=M(X)$ denote by $A u t M$ the group of all automorphisms $f: M \rightarrow M$.

Theorem 3.1: Let $M=M(X)$ be a matroid, G a subgroup of Aut (X). Then there exist a matroid $N=N(Y)$ with the following properties:

1. M is a restriction of N;
2. Aut $N \simeq G$;
3. every automorphism $f \in G$ extends uniquelly to an automorphism of N. (I.e. for every $f \in G$ there exists unique $\bar{f} \in$ Aut N such that $\bar{f} \mid x=f$.)

This generalizes some of the results of Piff and Welsh, see [4], chapter 17 .

Sketch of a proof: We may assume without loss of generality that every point M lies on a line with at least 4 points. Consider a set $X^{\prime}=X \times\{0,1\}$ and
let G^{\prime} be the group of all permutations $g^{\prime}: X^{\prime} \rightarrow X^{\prime}$ defined by $g^{\prime}(x, 0)=$ $(g(x), 0), g^{\prime}(x, 1)=(g(x), 1)$, for a $g \in G$. Let $\left(Y^{\prime}, E^{\prime}\right)$ be a graph which satisfies:

1. Aut $\left(Y^{\prime}, E^{\prime}\right) \simeq G^{\prime}$;
2. every $g^{\prime} \in G^{\prime}$ extends uniquelly to an automorphism of (Y^{\prime}, E^{\prime}) ;
3. (Y^{\prime}, E^{\prime}) is 3-connected and without triangles;
4. every edge of (Y^{\prime}, E^{\prime}) belongs to a cycle of length ≤ 7;
5. $\{\{(x, 0),(x, 1)\} ; x \in X\} \subseteq E^{\prime}$.

The existence of such graphs follows from techniques given in [3].

Let $N^{\prime}=N\left(E^{\prime}\right)$ be the cycle matroid of the graph (Y^{\prime}, E^{\prime}) and let N be the amalgam of matroids N^{\prime} and M and "chains of 3-1ines" of length
$\ell>\max \left\{7, r\left(N^{\prime}\right), r(M)\right\}$ which is constructed in [1].
This is indicated on Fig. 1.
As the amalgamation given in [1] is locally free, it is easy to see that N has all the desired properties:

Fig. 1

References:

[1] J. Nešetřil, S. Poljak, D. Turzik:
Amal gamation of matroids and their applications, J. Comb. Th. (B), 31, 1(1981), 9-22.
[2] J. Nešetřil, S. Poljak, D. Turzik:
Special amalgams and Ramsey matroids, to appear in Proceedings of the Conference on matroids, Szeged (1982).
[3] A. Pultr, V. Trnková:
Represenations of categories by means of combinatorial, al gebraical and topological structures, North Holland (1978).
[4] D.J.A. Welsh: Matroid theory, Academic Press, London, New York (1976).

Addresses:

```
J. Nešetřil
KKIOV MFF UK
Charles University
```

S. Poljak

StF CVUT
Czech Technical
University
D. Turzik

KM VSCHT
University of Chemical Technology

