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SOME REMARKS ON RAMSEY MATROIDS 

Jaroslav N e s e t ř i l , Svatopluk Poljak, Daniel Turzik 

The purpose of t h i s note is to summarize some of the results which are going to 

appear in [ 2 ] and to complement these results by s t a t i n g some open problems and 

related consequences : 

1. The fo l lowing i s the main r e s u l t of [ 1 ] : 

Theorem 1.1: For eмery simple matroid M = M(X) and for e\/ery pos i t ive integer 

k there exists a matroid N = N(Y) such that for every p a r t i t i o n 

Y = Yj U . . . U Yk there єx is ts a matroid M' = M'(X') , M' -* M , such that 

Г c Y . for some Y. . 

The statement of 1.1 may be abbreviated by saying that matroids have singleton-

Ramsey property. For many classes of structures (mainly of combinatorial type, 

such as graphs e t c . ) the existence of a singleton-Ramsey property may be esta-

Ыished by simple means. The proof of 1.1 given in [ 1 ] (and also in [ 2 ] ) is 

not of such s i m p l i c i t y . 

P a r t i c u l a r l y , the foПowing is not known: 

Problem 1.2: Denote by F(M) the minimal size of a matroid N which has the 

property stated in 1.1 . Is i t true that there exists a constant a such that 

Ғ(M) < |X|a for every matroid M = M(X) ? 

I t is also not known which classes of matroids have singleton-Ramsey property. 
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2. The fo l lowing is the main r e s u l t of [ 2 ] : 

Theorem 2 . 1 : For every simple matroid M = M(X) and for every posi t ive integer 

k there exists a matroid N = N(Y) such that for e^ery p a r t i t i o n a. U . . . U a . 

of the set of a l l l ines of N with exactly 2 elements there exists a matroid 

M' = MҶX') , M' -* M , such that a l l 2-point l ines of M' are in one of the 

classes of the p a r t i t i o n . 

The statement of 2.1 may be summarized by saying that matroids have edge-Ramsey 

property (an edge meaning a f l a t with 2 independent points) . 

A construction related to 2.1 is even less e f f e c t i v e and therefore i t i s , at 

present, needless to state an analogy of 1.2 . 

However, the fo l lowing seems to be an i n t e r e s t i n g problem: 

Problem 2.2: Which classes of matroids have edge-Ramsey property? 

Perhaps t h i s problem w i l l have mostly a negative answer. E.g. i t may be seen that 

the class of a l l graphical matroids does not have edge-Ramsey property. The same 

is true for transversal matroids. 

The fol lowing problem is related to the existence of edge-Ramsey matroids and i t 

seems to require a new technique: 

ProЫem 2.3: Given a matroid M = M(X) does there exists a matroid N = N(Y) 

with the fo l lowing property: 

For ewery p a r t i t i o n a , U . . . U a (n is a posi t ive integer) of the set of 

aП l ines of N wi th exactly 2 points there exists a matroid M' = MҶX') , 

Mł ->-M , such that the p a r t i t i o n of a l l 2-point l ines r e s t r i c t e d to M' 

is canonical. 
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Here we say that an equivalence ~ on the set of a l l 2-lines of M = M(X) is 

canonical i f there exists an ordering < of X such that one of the foПowing 

p o s s i b i l i t i e s holds for a l l 2-lines x y 9 ^1 yl w i th x < y , x' < y ' : 

1 . xy ~ x^y* i f f x = x' , y = y* 

2. xy ~ x^y' i f f x = x' 

3. xy ~ x^y* i f f У = Уl 

4. xy ~ ťy* 

A posi t ive solut ion to t h i s problem would provide both an analogy of Erdös-Rado 

canonization lemma for matroids and a strenghtening of the select ive property of 

matroids proved in [ 1 ] . 

3. The above theorems were established by means of amalgams of matroids along 

a special set systems. The method of the proof has some fur ther consequences. 

For example the foПowing may be proved using the basic construction given in 

[ 1 ] , [ 2 ] : 

Given a matroid M = M(X) denote by AutM the group of a l l automorphisms 

f : M -> M . 

Theorem 3 . 1 : Let M = M(X) be a matroid, G a subgroup of Aut (X) . Then 

there exist a matroid N = N(Y) with the fo l lowing propert ies: 

1. M is a r e s t r i c t i o n of N ; 

2. Aut N ~ G ; 

3. every automorphism f Є G extends uniquelly to an automorphism of N . (I.e. 

for every f Є G there exists unique 7 Є AutN such that 7|x = f .) 

This generalizes some of the results of Pi ff and Welsh, see [ 4 ] , chapter 17 . 

SЦetch of a proof: We may assume without loss of generality that every point 

M lies on a line with at least 4 points. Consider a set X' = X * {0,1} and 
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let G' be the group of all permutations g' : X' -* X' defined by g'(x,0) = 

(g(x),0), g'(x-l) = (g(x),l) , for a g € G . Let (Y',E') be a graph which 

satisfies: 

1. Aut (Y',E') c* G' ; 

2. every g' € G' extends uniquel ly to an automorphism of (Y ' ,E ' ) ; 

3. (Y ' ,E ' ) is 3-connected and without t r i ang les ; 

4. every edge of (Y ' ,E ' ) belongs to a cycle of length < 7 ; 

5. { { ( x , 0 ) , ( x , l ) } ; x€X} 5 E' . 

The existence of such graphs follows from techniques given in [3 ] . 

Let N' = N(E') be the cycle matroid of the graph (Y\E') and let N be the 

amalgam of matroids N' and M and "chains of 3- l ines" of length 

I > max {7,r(N'),r(M)} which is constructed in [ 1 ] . 

This is indicated on Fig. 1 . 

As the amalgamation given in [1 ] is locally free, it is easy to see that N 

has all the desired properties: 

Fig. 1 
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