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DIRAC MONOPOIE DERIVED FROM REPRESENTATION THEORY

Pavel Sfovigek

1.INTRODUCTION

P.AM. Dirac was the first who made the serious attempt to un - .
derstand a point magnetic charge - Dirac monopole = in the frame-
work of quantum mechanics [1]. He apalyzed gquantum mechanical mo=-
tion of a charge particle in a magnetic monopole field and was led
to the conclusion that a consistent quantum mechanical description
exists only if the value of magnetic charge is quantized.

A new and very natural description of the monopole field is based
on some concepts of modern differsntial geometry: the notions of
vactor potential and field strength are replaced by notions of
conpection in a complex line bundle and its curvature, respective-
1y [71, [4].

We shall derive quantum kinematics of a charged particle in a ma~
gnetic monopole field assuming only the rotational symmetry of the
configuration space.. As the main tool for quantization on homogene-
ous spaces [2] we use Mackey’s theory of systems of imprimitivity
[51.

2 ,SYSTEMS OF IMPRIMITIVITY

The symmetry of the configuration space is expresed by a trans=
formation group G of the space M, GXM-»M. Its action g€G, g: M-=M :
u-*zu should be represented in the quantum mechanical Hilbert space
H by unitary operator V: g—*V(g). Physical quantities represented
by selfadjoint operators in H are transformed via A“V(g)AV(g)-l.
The position measurements are described with the help of a projec-
tion-valued measure E on the Borel O-algebra. dXM) of M E: S—=E(S)
S€MB(M). The G-actions on M and the corresponding unitary trans -
formations of H are bound together by

E(g.S) = V(g) E(S) V(g)~™1 for all g€G, S€Bm).
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A couple (E,V) fulfilling this condition is said to be an imprimi-

tivity system. The notions of irreducibility and unitary equivalen-

ce are introduced in the same way as for- unitary representations.

If an element A of the Lie algebra is chosen, then due to Stone’s

Theorem exactly one selfadjoint operator P exists which satisfies
V( exp t.A ) = exp( -itP/h ) for all real t.

This operator is interpreted as a generalized momentum operator.

If the symmetry group G acts transitively on M Imprimitivity
Theorem can be applied to classify all inequivalent irreducible
imprimitivity systems. In this case the space M can be identified
with the factor space G/K in a natural way, where K is the stabi-
lity group of some fixed point in M.

Imprimitivity Theorem. Let G be a locally compact group satis-
fying the second countability condition, K its cloused subgroup.
Let (E,V) be an imprimitivity system for G based on G/K. Then there
exists a unitary representation L of the subgroup K such that (E,V)
is equivalent to the canonical imprimitivity system (EL,VL) (de-
finition see below). If Ly, L, are two unitary representations of
K, then the corresponding canonical imprimitivity systems are equi-
valent if and only if these representations ars equivalent. Final-
ly, the canonical imprimitivity system is irreducible if and only
if the representation L is irreducible.

Definition of the canonical imprimitivity system. Let us fix
a quasiinvariant measure avon G/K. The Hilbert space H consists of
equivariant functions

¢: G=H(L), ¢(ak) = L(k) "§(a) for all k €K,
where H(L) is the Hilbert space of representation L, such that
1l)mapping a*<{{(a),f> is measurable on G for all f € H(L), where
{.,+.? is the Hermitian product in H(L),
2)IiYil< % | where the norm is induced by the Hermitian product

(9,9) = {g(a), dmse
‘f 7 G§K gca) f.(a» a8
The operators EL, V" are given by :

Lisyg =
E(S)Y = Y%_l(s)uf ’

where xT is the characteristic function of a set T, 9¢: G=G/K is
the projection map,
= 8¢ (g1 -1
[vi(e)fl(a) = Az (7= e

where dr/ dt(vg is Radon-Nikodym derivative ana ‘uog(s) i= ﬁ“(g,s) R
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3.CONSTRUCTION OF THE FIBRE BUNDLE

We consider the configuration space m3\{o} and want to exploit
its rotational symmetry. We shall sonsider only the angular part,
the radial part will be inessential and so we shall investigate
quantum kinematics on the unit sphere 82 (embedded in R3). Points
of S can be identified with 2x2 traceless Hermitian matrices with
determinant -1 :

wesfeoru=Xoka,
here 6& , k=1,2,3 , are the Pauli spin matrices,Gi2 =1, 6365 =
i 63 atc. The group SU(2) is the quantum mechanical symmetry group
and it acts on S” according to

U—=TUT" |, TEsSU(2).

To find the stability group K we fix the points ug =t63 =
(0,0,%1). Then K = {(‘5 g“)} = U(1), %= 1. Since SU(2) acts on

s transitively, s? can be identified with SU(2)/U(1) and Mackey’s
theory is applicable. So we have the Hopf fibre bundle (SU(2),%C,
SZ;U(I) ). The projection map M is .

WMr) = 16;7%= (2 Re'B,2 InodB,dk A7), ir

R
EE) e
According to the Imprimitivity Theorem all inequivalent irreduci-
ble imprimitivity systems are in one to one relation with all ip=-
equivalent irreducibls unitary representations of U(1l) :
Ly: U(1)=U(1) X", nez.

The Hilbert space H is constructed as the space of equivariant fun-
ctions, i.e. complex functions on SU(2) satisfying the condition

Y T(%‘g*)) =°C“"['(T)

and having the finite norm jnduced by the scalar product
_ *
(Tl’YZ) 52 YlYZ g

with invariant measure dam = sinﬁ?dirdy.

It is convenient to work in the associated complex line bundle
instead of the principal bundle. The Hilbert space of equivariant
functions is then replaced by unitarily equivalent Hilbert space
of sections in the complex line bundle. In order to write down ex=-
plicit relations, trivializations mappings of the Hopf bundle are
necessary. Choosing an open covering of the sphere
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{U+,U-} ’ Use = 82\ {ug} ’

and using the spherical coordinates (47, 4y ) we obtain two triviali-
zation mappings determined by a pair of local sections :

Pt Us>of1(Ug) CSU(2), aropy = ids

g-: T =ot= o ¥ cos(F/2), B= sin(F/2); 0LIEW, OKY<

Q+: Fro= cos(¥/2), 5= o3 sin(¥/2); ogIKaT, 0gY< 2o,
Hilbert space H'of sections consists of couples of functions (’Yf,
-\'I_), lrz: Us=> €, for which

Y (u) = s 4(u) almost everywhere on UpATU_.

To each equivariant function «’1 there corresponds exactly one sec-

tion 4"1= '\"0?:.

4 ,THE DIRAC MONOPOLE

The resulting (canonical) imprimitivity systems (E,V) based on s®
involve the projection valued measure on Borel sets of the sphare
B(S) = (Y, ¢-) > X y0 X Y-, St =squr,
where XS is the characteristic function of séﬁ(sz). From V we
shall determine generalized momentum operators. The one-parameter
subgroup iexp(—itc‘kﬁ)} consists of all rotations around k-th axis.
Therefore the operator J, defined by
V(exp(-it@i/Z) ) = exp(—ith/Tx), te€R ,
is interpreted as the k-th component of the angular momentum ope =
rator. For smooth equivariant functions Y (ie.8 Yj-_ are smooth),
we have

(T (D) = ih & exp(ity/2).m [oog

and 'Jk : (Y*’Y’)'“(Jk&)“f"'"yk(-)')"’)'
After straightforward calculation the explicit form of Iy is ob =
tained:

s 1 k
Jk(i,)"t’i-(u) = (-ihX, - qAX,) - znoh u )'\f':(u).
Hore X, =€, x3 2% h i he sphere i
Kk kjm o is the vector field on the sphere inducea
by the assumed one-parameter group of actions;
°ﬂ=§n%(1 - cos¥) ay, & = --5%(1 + cos?) af

are l-forms on U,,U_, respectively, satisfying (on UNU_) :

‘i%d:.= -i'g'ol.‘ﬁ (a oin¥y o-in¢ |
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Hence the couple (iqoly/h,iqo~/h) determines a connection in
the complex line bundle. The 2-form

= adly= ad. = n‘th sin® adAay

is well defined on the entire sphere and can be interpreted as a
magnetic field. Defining the magnetic charge g by
qg=‘£2 aB = 2wk,

we get ‘g-t g =
() =Zqu,

corresponding to a magnetic monopole placed in the centre of the
sphere. At the same time we obtained Dirac' s quantization condition

gq
S = MR, n€7Z.

-
If the vector potential A is used instead of the connection, the
angular momentum operator can be written in the familiar form f6],

[31 :
- - gq
X(p-adh) -7

-
T

1]

-
J =

‘5 «CONCLUSION

The correct forms of quantum mechanical operators in the case of
magnetic monopole are obtained from the assumption of rotational
symmetry of the configuration space with the help of Mackey’s the-

ory.
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