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KAC-MOODY ALGEBRAS : AN INTRODUCTION FOR PHYSICISTS 

David I. Olive 

1 Introduction 

The aim of these notes is to provide an introduction to the 

theory of Kac-Moody.algebras accessible to theoretical physicists. 

It is based on the first three of five lectures given at the Srni 

Winter School (the last two lectures dealt with vertex operators 

along the lines of the November 1983 Berkeley lectures written up 

by Peter Goddard and myself; (GODDARD and OLIVE 1983)). These 

notes will be complemented by those of Peter Goddard also given at 

Srn_L (GODDARD). I am grateful to our hosts from the Charles 

University in Prague for their hospitality in providing such 

beautiful and comfortable surroundings. 

2 Relevance of Kac-Moody algebras and their development 

Roughly speaking the theory provides a precise mathematical 

framework for studying quantum field theories in two space time 

dimensions where the "Schwinger term" plays a crucial role. 

Because of this there were three apparently independent 

developments in theoretical particle physics during the 1960*s 

which now have important influences on the mathematical theory. 

These are 

(a) Skyrme's fermion-boson equivalence constructing 

a fermionic quantum field operator for the Sine-Gordon 

soliton; (SKYRME). 

(b) Gellmann's "quark model", construction of current 

algebra; (GELLMANN; GELLMANN and NEEMAN; ADLER and 

DASHEN) : the use of current algebra to determine 

dynamics by expressing the (traceless) energy 

momentum tensor in terms of the currents, as 

proposed by Sugawara and others (SOMMERFIELD, SUGAWARA). 

(c) The vertex operator construction of physically 

realistic particle scattering amplitudes in string 

theory (NAMBU; FUBINI, GORDON and VENEZIANO; 

FUBINI and VENEZIANO). 
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In 1968 Victor Kac and Bob Moody enumerated a class of 

infinite dimensional Lie algebras which were nevertheless tractable 

because the dimension diverged in the mildest possible way (KAC 

1968; KAC 1983; MOODY). These algebras possessed an integer 

grading respected by the commutation relations such that the 

dimension of the subspace with a given grade did not increase too 

fast as the label diverged (and turned out to be bounded). 

As will be explained here it proved possible to construct the 

root system of the algebra rather analogously to that of the 

ordinary finite dimensional simple Lie algebras. Further, certain 

representations could be found similarly, together with formulae 

for their characters, generalising Weyľs famous expression. Just 

as in the finite dimensional case the denominator can be written in 

two alternative ways now involving either infinite products or 

infinite sums. Thus an algebraic theory subsumed and generalised 

all sorts of identities concerning theta functions as studied in 

nineteenth century- complex analysis, and so in mathematics too, 

unexpected and gratifying unifications occurred. 

After about 1978 the developments in theoretical physics (a) 

(b) and (c) mentioned above were incorporated into the 

representation theory of Kac-Moody algebras showing that 

fascinating possibilities could occur with no parallels in ordinary 

Lie algebra theory. These are explained in the Berkeley notes 

already mentioned and in Peter Goddarďs lectures (GODDARD and 

OLIVE 1983, GODDARD). 

Very recently there has been a feedback into theoretical 

physics enгiching three apparently diverse areas :-

(i) The theory of integrable field equations and 

solitons (particularly in the work of the Kyoto 

school (JIMBO and MIWA; see also OLIVE and TUROK 1983b,1984). 

(ii) The theory of critical phenomena in two-

dimensional lattice theories (FRIEDAN, QIU and 

SHENKER; GODDARD and OLIVE 1984; GODDARD, KENT 

and OLIVE). 

(iii) The construction of consistent and realistic 

quantum stгing theories of all the particle 

interactions; (GREEN and SCHWARZ; GROSS et al). 

Many other exciting developments can undoubtedly be expected 

in physics. 
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As we have explained the theoгy blends together in a 

remarkable way, nineteenth century analytic function theory, two 

dimensional quantum field theory and the algebraic theory of roots 

and weights of Cartan, Weyl, Dynkin and others. It is the latter 

ingredients which the mathematicians have developed and which is 

least familìaг to physicists despite its great importance to the 

complete structure. My aim is therefore to explain it in a 

straightforward way which I hope is accessible to theoretical 

physicists with a knowledge of the theory of ordinary simple Lie 

algebras (and foliows broadly the mathematical presentation of 

MACDONALD). 

3 Summary of the theory of compact simple Lie algebras (of finite 

dimension). 

If we choose an "orthonormal basis" the commutation relations 

of the Lie algebra g are : 

[
T
-
f T

J] = i
 f
-JM< T (3.1) 

i 1k 
where the structure constants f

 J
 are totally antisymmetric 

because we have chosen 

Tr(T
X
 T*

1
) = 6

1,1
 (3.2) 

where Tr denotes the invariant scalar product on g constructed by 

rescaling the trace of T T
J
 evaluated in some finite dimensional 

irreducible representation of g. 
i ik 

The standard ploy for putting f
 J
 into a more canonical form 

is to seek a Cartan subalgebra of mutually commuting generators 

(which cannot be extended) : 

[H
1
, H

J
] = 0; i,j = 1, r = rank g . (3.3) 

Complex linear combinations of the remaining generators are formed 

to constitute eigenstates under commutation with respect to the 

H
1
 : 

[H
1
, E

a
] = a

1
 E

a
 . (3.4) 

a is a root and E its corresponding "step operator". The 
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remaining commutators, between the step operators, must take the 

form : 

[Ea, BP] = 

1 

rconst E ^ P if a+p is a root 

a.H if a+p = 0 

0 if otherwise . (3.5) 

In this new basis, called the "Cartan Weyl" basis, the roots 

constitute structure constants with a remarkable crystallographic 

symmetry with respect to the "Weyl group" composed out of 

reflections in hyperplanes perpendicular to a root a : 

a (x) = x - (2a«x/a2)a . (3.6) 

The î oots can be split into two distinct sets called positive 

and negative such that if a and p are positive roots and a+p is a 

root then it is positive. Further any negative root is the 

negative of a positive root. This property is by no means obvious 

yet it can be achieved in a multitude of gauge equivalent ways. 

Given one such way we can further construct "simple roots" such 

that all the positive roots are obtained by adding them suitably. 

There are precisely r = rank g simple roots. 

Their scalar products 

K±i = 2a(i).
 a

( j ) / (
a
( j ) )

2 <1.J " -W.-.r). (3.7) 

have to be integers and form a r x r matr^j called the Cartan 

matrix. Its diagonal elements are automatically equal to two so 

that only the off diagonal elements (which are zero or negative 

integers) carry non trivial information which can be encoded in the 

Dynkin diagram which consists of r points corresponding to the 

simple roots with points i and j joined by K.. K.. lines. 

The Dynkin diagram fully specifies the algebra since from it 

can be formed the simple roots and hence all the roots i.e. the 

structure constants in the Cartan Weyl basis. 

In physics one requires finite dimensional irreducible 

representations of the Lie algebra g. Let \\i> denote a basis state 

diagonalising the H in such a representation 

H1! |i > = n1 | n > (3.8) 
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We say n1 is a weight and it has to satisfy 

2 n«a/a2 e 7L any root a of g . (3.9) 

Such a representation has a unique "highest weight" X such 

that although X is a weigjit X+a never is if a is a positive root. 

X satisfies (3.9) with the integer > 0 if a is positive. The 

inequivalent irreducible Jinitary representations of g are 

classified by all such highest weights. 

This summary is an *^Ude-memoire" and any reader unfamilar 

with the results is urgetf to consult a suitable text since 

henceforth a full understanding is assumed. I have written such 

lecture notes with Kac-Mdbdy algebras in mind as a sequel (OLIVE). 

These notes are part of that intended sequel. See HUMPHREYS for a 

fuller treatment of Lie algebras. 

4 (Untwisted) affine Kac-Moody algebras 

Associated with the Lie algebra g (3.1) is the (untwisted) 

Kac-Moody algebra g whose generators T possess an integer valued 

suffix n in addition to the integer i, as in (3.1), and satisfy 

commutators : 

[Tm, TJ] = i f 1 J kT m + n + k 6
ijm 6m+n> Q (4.1a) 

[k, Tm] = 0 . (4.1b) 

Notice that the integer suffix is "conserved" in (4.1a) 

suggesting to the physicist that it labels a sort of momentum. In 

fact roughly speaking (4.1) specifies a current algebra in 

momentum space including a Schwinger term with "c-number" 

coefficient k (SCHWINGER), T being the "current at zero momentum 

transfer" should be the charge and indeed satisfies (3.1). It can 

be shown that the "Schwinger term" satisfies the necessary Jacobi 

identities and is in a sense the most general c number term that 

can be included in the algebra g which is called a "loop algebra" 

if k - 0 (see GODDARD). Equations (4.1) appear to be a rather 

trivial extension of (3.1) but the occurrence of the Schwinger term 

affords a surprisingly rich structure as we shall see (and as was 
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already appreciated by physicists in the '60's). 

More precisely if we consider a quark model current algebra in 

two dimensions the light cone components of the currents, jt±j 

mutually commute and each satisfy (4.1) in momentum space if the 

light cone variables are compactified into circles so that 

momentum is quantised. 

Other Kac-Moody algebras exist besides algebras (4.1). These 

are called "twisted" algebras but do not seem to have such ready 

physical applications and so will not be discussed specifically 

apart from a list of their Dynkin diagrams in section 6. They are 

essentially subalgebras of the untwisted algebras (4.1). 

Let us now imitate the discussion of section 3 concerning 

finite dimensional Lie algebras and seek Cartan subalgebra 

generators and step operators for roots. Changing to the Cartan 
rr i 

Weyl basis for g we have generators E , H and k and we see from 
(4.1) that H1 (i = l....r) and k mutually commute. By (4.1) 

[HQ, E
a] = a1 Ea (4.2a) 

[k, Ea] = 0 . (4.2b) 

Thus the roots (<x,o) appear to be infinitely degenerate since they 

possess corresponding step operators E for any n. We can "split 

the degeneracy" by introducing a new generator d, called the 

derivation satisfying 

[d, Tn] = n T1 , [d, k] = 0 . (4.3) 

Physicists recognise d as an energy or momentum operator and it 

will equal minus the Virasoro generator Lfi of Goddard's lecture. 

By (4*3) d can be used to extend the dimension of the Cartan 

subalgebra by one to r+2. Also 

[d, E a ] = n Ea , (4.4) 

so that with respect to the Cartan subalgebra (H , k, d) we have by 

(4.2) and (4.4), step operators E a with corresponding roots a : 
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E^ : a = (a, 0, n) . (4.5) 

The remaining generators H constitute step operators for roots nA 

where 

H* : nA = (0, 0, n) (4.6) 

Note that•these roots differ from those in (4.5) by being 

r-fold degenerate in that the H act as step operators for any 

values of i = 1, r. This is the first striking new feature 

compared to finite dimensional Lie algebra theory. 

The root system of *g is infinite of course yet spans a finite 

(r+1) dimensional space. Evidently we can define a set of positive 

roots by 

(a, 0, n), (0, 0, n) n > 0 

and (a, 0, 0) a > 0 (4.7) 

where a > 0 is in the sense of g in section 3. Considering the 

subset of (4.7) with n > 0 we see that the old simple roots (of 

section 3) furnish simple roots of *g : 

a. = (a., 0, 0) i = 1, r (4.8a) 

We also need a simple root with n = 1 which has to be 

aQ = (-*, 0, 1) (4.8b) 

where c|> is the highest root of g. In order to construct the Dynkin 

diagram for the algebra g we need to know the scalar product 

between the roots but for this we need the analogue of (3.2). 

5 Invariant scalar product on g 

The representations of the Kac-Moody algebra §, (4.1) with non 

zero c-number k are all infinite dimensional. Hence we cannot 

define an invariant scalaj* product of two generators in terms of a 
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trace evaluated in some matrix representation as this definition 

would very likely diverge. We have to proceed less directly and 

the result will be the first big surprise, namely that the metric 

so found is indefinite with a single negative eigenvalue (and all 

others positive). Thus.it resembles the metric of space time found 

by Einstein in his theory of relativity and will be called 

"Lorentzian". This resemblance will be reinforced by the 

connection with string theory and the physical applications there. 

The Lorentzian metric is such a crucial result that we shall 

establish it in detail here. 

We shall notwithstanding denote the scalar product by Tr as in 

section 2. It must have the properties of (a) symmetry and (b) 

invariance : 

Tr (AB) = Tr (BA) (5.1a) 

0 = Tr ([A, BC]) = Tr ([A,B]C) + Tr (B[A,C]) (5.1b) 

where A, B and C are generators of g. We know that within g such a 

product is essentially unique and given by (3.2). Hence 

Tr (T1 T*1) = 6iJ . (5.2) 
o o 

Taking A = d, BC = T* TJ in (5.1b) we find by (4.3) that 

Tr (T TJ) = 0 unless m+n = 0 . (5.3) 

Tak ing A = T 1 , BC = kTjjj in ( 5 . 1 b ) we f ind by ( 4 . 1 ) 

Tr (k Tm) = 0 ( 5 . 4 ) 

Tr (k 2 ) = 0 ( 5 . 5 ) 

Taking A = T^n, BC = T
1 Tj| (5.1b) reduces, using (5.2) and (5.4) to 

Tr (T* TJ„J = 61J m —m 
which combined with (5.3) can be rewritten as 



• KAC-MOODY ALGEBRAS 185 

Tr (T1 TJ* ) = 6iJ 6 (5.6) 
v m -n' mn . 

Finally, taking A = T1, BC = d Tjj we obtain from (5.1b) 

Tr (kd) = 1 (5.7) 

Tr (dT1) = 0 ^ (5.8) 

We see that by (5.4) and (5.8) that the two dimensional 

subspace of g spanned by k and d is orthogonal to the infinite 

dimensional subspace spanned by the T which is positive definite 

as we now show. The hermiticity properties of g are 

Tn f = T-n' k+ = k, d+ = d (5.9) 

Hence the hermitian generators (T1 + T _)//2 and (T1- T1 )//2i form 
m -m ' m -m ' 

an orthonormal set by (5.6). 

By (5.5) and (5.7) the metric in the k,d subspace forms a 

matrix 

0 1 

where x = Tr d2 is undetermined. The eigenvalues X.. and Xn of the 

matrix satisfy the secular equation 

X (X - x) -1 = 0 

so that their product X.,X0 = -1 (whatever x). Hence one of these 

eigenvalues is negative irrespective of the undetermined quantity x 

which can actually be redefined to vanish as we now see. Note that 

the commutation relations (4.1), (4.3) are unchanged if we replace 

d -• d' = d - xk/2. After this redefinition we have Tr d2 = 0 which 

we shall henceforth assume. 

' The occurrence of this single negative eigenvalue is what we 

meant by saying the "metric" on g is "Lorentzian" and it will have 

an important influence on what follows. 

We commented that the metric defined directly as a trace in 



186 DAVID I. OLIVE 

some representation would very likely diverge yet we have succeeded 

in finding an algebraic way of ascribing a finite meaning to the 

metric. A physicist would call this a "renormalisation 

procedure". 

6 Scalar products of roots of g* 

The invariant metric we have just constructed defines by 

restriction a metric on the Cartan subalgebra of gjformed by 

(H ,k,d) which is also Lorentzian. This in turn enables us to 

define a product on possible eigenvalues of the Cartan subalgebra, 

m = (u, [*k, Hd) : 

(m,m') = JI-JI1 + uRud
r + uduk' . (6.1) 

Hence the roots of the form (4.5) have scalar product 

(a,a1) = a-a' (6.2) 

while those of the form (4.6) yield 

(a,n£) = 0 (nA, nl) = 0 . (6.3) 

We see that the roots (4.5) and (4.6) are quite distinct in 

character. The roots of type (4.5) are called "real roots" and 

have positive length. The roots of type (4.6) are called 

"imaginary roots" and are orthogonal to all the roots including 

themselves. This is only possible because the metric (6.1) is 

Lorentzian. 

In the language of relativity theory the imaginary roots are 

"light like". As we saw they are r-fold degenerate .just as the 

photon which is the quantum of light propagates with a given light-

\±ke momentum in r possible linearly independent transverse 

polarisation states. This resemblance is not accidental. In the 

vertex operator construction the step operators for the imaginary 

roots are represented by vertices for the photons (or gauge 

particles) of the string theory. 

It also follows from (6.2) and (6.3) that the Cartan matrix of 

g (formed of scalar products of its simple roots a.) : 
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K = 2(a., a )/(a , a ) i,j = 0,1,2 r (6.4) 

equals the "extended Cartan matrix" of the finite dimensional Lie 

algebra g obtained from the ordinary Cartan matrix (3.7) by adding 

an extra row and column associated with the root a = -<J>. 

One way of calculating K . and K. is to observe that if X, 

oi jo i 

are the "fundamental weights" of g, defined by 

2 y a . / ( a . )
2
 = 6.J i,.j = 1, r (6.5) 

(so that any weight of g, (3.9) is an integer linear combination of 

the X. and vice versa), then by (6.4) and (6.5) 

r 
4 = - z K .X. (Q»Q) 

i=l
 0 1 x 

Further, as <\> is a long root of g 

к
. io 

0 if K . = 0 
oi 

-1 if K . Ф 0 (6.7) 
oi 

These observations enable us to construct the Dynkin diagram 

of g from that of g given (6.6). For example every particle 

physicist knows that the SU(3) octet is a quark antiquark bound 

state. More generally for SU(N) 

* " \ +
 *N-1 

Hence the SU(N) Kac-Moody algebra Dynkin diagram is obtained from 

that for SU(N) by adding an extra point (0) and joining it to the 

two extremities of the SU(N) Dynkin diagram 

—> 

Likewise <p = X
2
 for the orthogonal group Lie algebras and the extra 

point (o) is joined to the penultimate point of the S0(N) Dynkin 

diagram 
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• • • -- - _ _ 

— Ф > _ _ • <Şï* 
This procedure can be repeated to obtain from the Dynkin 

diagrams for the simple Lie algebras g the Dynkin diagrams for all 

the associated (untwisted) Kac-Moody algebras g. The results are 

indicated below with the added lines drawn with dots 

r > 2 Л. 
r=l 

D : r > 4 
r O. 

^ _ _ . . . 

O : Л ; D o-

-<фrx) 

J
8 

O • • •- o--._Л 
_ЛL o-- ^ * 

Notice that the extended Dynkin diagram formed by adding the point 

(0) often has more symmetry than the original diagram and never 

less. The gain in symmetry can be related in a precise way to the 

centre of the simply connected group whose Lie algebra is g (OLIVE 

and TUROK 1983a). For example SU(r+l) has centre Z_,
+ 1
 and this 

is the cyclic symmetry of the A Dynkin diagram (which has a 2 

(r+1) element dihedral symmetry group). Likewise the group of E_ 

has centre Z_ which also occurs as a symmetry of the E_ Dynkin 
o b 

diagram (which altogether has S symmetry). 

We can also draw the Dynkin diagrams of the "twisted" Kac-

Moody algebras. Apart from the last two these are obtained from 

the untwisted ones by interchanging long and short roots so that 

the arrows are reversed : 
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> <-?• ca£* • •-• • • Ф 1 1 3 0 

-<ф» o • <3^-o-
and 

<^э» • • — • <~ŞЭO 

The significance of the distinction between solid (•) and open (0) 

vertices will be explained later. 

7 The Weyl group of g 

The Weyl reflection in the hyperplane perpendicular to the 

real root a is specified by : 

s
a
(x) = x - [2(x,a)/(a,a)] a (7.1) 

in analogy with (3.6) for the finite dimensional Lie algebra g 

except that the "Lorentzian" metric (6.1) must be used in (7.1) and 

that (7.1) is defined only for real roots and not imaginary roots 

as (a,a) vanishes for them. The Weyl group W is the infinite 

discrete group generated by the reflections in the real roots of g. 

As A the primitive imaginary root is perpendicular to any real root 

of g by (6.3) we have 

s
a
(l) - A (7.2) 

for any real root a. Hence each imaginary root is left invariant 

under the action of any element of W. On the other hand real roots 

are reflected into real roots so that the set of real roots is 

permuted by W. 

We shall now show that W has the general structure 

W = W a A v (7.3) 

that is it is isomorphic to the semidirect product of the finite 

group W (the Weyl group of g) with A v, the coroot lattice of g. 

(A v is the lattice spanned by the coroots a
v - a/a2

 where a are 

roots of g). This is rather like the statement that the Poincare 

group is isomorphic to the semidirect product of the Lorentz group 

with the translation group. 
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To see (7.3) we let sa (7.1) act on 

x = (I, K, 6) . (7.4) 

Ry e q u a t i o n s (4.5), (3.6), (6.1), (7.1) and (7.4) 

2 
s a ( x ) = ( a f f U + 2 n K a j a 2 ) , K, 6 + [l2 - ( I + 2 n K a j a 2 ) ] / 2 K ) 

H e n c e 

s = s , n = a (t v) 
a a+nJl av a ' 

where t v can be thought of as a d i sp lacemen t by 2K times the 

coroot a and 

2 
t v(x) = (F, + 2Kaja2, K, 6 + [l2 - (F, + 2Kaja2) ]/2K) 

It is easy to check that 

°P V "p -
 t °P(a

V) 

from which it follows that A v is an i n v a r i a n t subgroup of W and 
^ r .A 

that W has the structure (7.3). It. is easy to visualise W as a 

group of i n v a r i a n c e s of A v. A v itself f u r n i s h e s the t r a n s l a t i o n 

i n v a r i a n c e s while the subgroup of W which leaves a p o i n t of A v 

fixed is isomorphic to W. It is an i n t e r e s t i n g historical fact 

tha£ groups of this type were classified by Coxeter u s i n g a Dynkin 

.diagram notation long before the recent developments (COXETER 

p.194). 

8 Highest Weight R e p r e s e n t a t i o n s of g 

Finite dimensional representations of the f in ite dimensional 

Lie algebra g have both highest and lowest weight states. These 

states are un ique if the r e p r e s e n t a t i o n is irreducible. 

In physical a p p l i c a t i o n s of Kac-Moody algebras g, (-d) is 

usually i d e n t i f i e d physically with an operator such as the energy 

or scale operator whose spectrum must be bounded below. It follows 

that the r e p r e s e n t a t i o n con s idered must possess highest weight 

states. Then as shown below the c-number k must be positive. Then 
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there must be no lowest weight states or else k would also be 

negative.which is a contradiction. Hence the representations are 

infinite dimensional. 

The analysis of possible highest weight states of *g we now 

undertake superficially resembles the usual treatment for g. Let A 

= (X, K, 6) be a highest weight in the sense that while it is a 

weight of the representation considered (A+a) never is if a is a 

positive root of g. If A> is the corresponding state we have 

E A > = 0 a > 0 (8.1) 

a ' 

H
0 \° = X

i l *
 >f k

l
X > = k

l *
 >9 d

l * >
 = 6
|* > • <

8
-

2
) 

We consider the sequence of all possible states obtained from 

\ l> by acting with step operators for negative roots 

Л>, E A>, E ,E O, E E _E 

-a -b -a I -c -b -a 
U>, (8.3) 

(with a, b, c... positive roots). Then these states have weights 

A, A-a, A-a-b, A-a-b-c,.... (8.4) 

respectively. It is possible to show that no new states are 

obtained by acting on the states (8.3) with step operators for 

positive roots. Hence the set (8.3) span an subspace invariant 

under "g with the feature that the possible weights m all differ 

from A by a sum of positive roots. We write 

m < I . (8.5) 

Thus A is in fact the unique highest weight in the representation 

defined by the spaces spanned by (8.3) and can be used as a label. 

Corresponding to the Weyl reflection (7.1) in the real root a 

there exists a unitary element S of the SU(2) group obtained by 

exponentiating the SU(2) subalgebra associated with the real root a 

such that S U> has weight s
o
(A). Since this weight must belong to 

a | a 
the set (8.4) we have, by (8.5), s (A)<A which implies, by (7.1) 

2(a,A)/(a,a) = integer > 0 

for each positive real root a. (8.6) 
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We can solve (8.6) just as in the g analysis by defining r + 1 

fundamental weights JL of g satisfying 

2(Ai.aj)/(aj,aj) = 6±J i,j = 0, 1, r (8.7) 

where a are the (r+1) simple roots (4.8). Then the general 

solution to (8.6) is 

A = 1 x.JL, x. an integer > 0 (8.8) 
i=0 x r x 

apart from an indeterminate component in the d direction. 

Using the definition (6.5) for the fundamental weights X. of g 

and (4.8) we find that the fundamental weights I. of g, (8.7) are 

A. = (X^ m±<\>2/2, o) i = 1 r (8.9a) 

* o = (0, mod>
2/2, 0) (8.9b) 

where the last entry, (the d component) is undetermined and put 

equal to ze 

defined by 

equal to zero arbitrarily. The coefficients m. are integers > 1 

r 
ф/ф

2
 = ľ п a

i
/(a

i
)

2
, m

Q
 = 1 (8.10) 

i = l 

The 2k/ <\>2
 component of I has a special structure and is called the 

"level" of JL. By (8.8) and (8.9) it is given by 

r 
level i = Z m x. (8.11) 

i=0 *
 x 

It is a positive integer. Thus 2k/<\>2
 is quantised and positive in 

a highest weight representation. 

The level 1 or "basic" representations are particularly 

significant since higher level representations can be built up by 

considering direct products of basic representations and reducing 

into invariant subspaces. We shall now enumerate these basic 

representations. As m. > 1 expression (8.11) can equal unity only 

if I is a fundamental weight A. and if, in addition m. = 1. 

Books on Lie algebra usually tabulate the expansion of the 
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highest root <\> in terms of simple roots a (see, for example 

HUMPHREYS p.66). Thus for F 

I 2 \ i 
F4 = 

<P = 2a1 + 3 a + 4 a + 2 a 

Hence 

*/«,2 = "2 a1/(a1)
2 + 3 ^K^)2 + 2 ^ / ( o ^ ) 2 + <*4/

(a4)2 . 

Thus for F. only m and m equal 1 and the only basic weights are 

I and X . The corresponding vertices are denoted as open (rather 

than closed) dots in the Dynkin diagrams of section 6 where the 

results of the corresponding calculations for all the Kac Moody 

algebras g are indicated. 

Some of these results can be obtained without calculation. 

For example mQ = 1 always by (8.10). The extra symmetry of the 

extended Dynkin diagrams that we commented on becomes important now 

since any point (i) symmetrically related to the point (0) must 

also have m.= 1. Thus all points of the A Dynkin diagram are 

symmetrically related to point (0) and hence all m = 1. Similarly 
*** ^ ^ .*N ys 

for D all m. for the four tip points equal 1. For the A , D , E 
r i r r r 

Kac-Moody algebras whose Dynkin diagrams are simply laced all 

points with m. = 1 are obtained in this way as being symmetrically 

related to the point (0). 

Representations of ordinary Lie algebras g whose highest 

weights are related by a symmetry of the Dynkin diagram of g are 

isomorphic (though not equivalent) because of the existence of an 

outer automorphism of g. For example D 4 (S0(8)) has three 

isomorphic 8 dimensional representations, the vector and the two 

spinor representations, associated with the three tips of its 

Dynkin diagram •—^ . Presumably a similar statement holds for 

the representations of Kac-Moody algebras § whose highest weights 

are likewise related by symmetries of the Dynkin diagram of g. If 

so, the basic representations of the simply laced Kac-Moody 

algebras (A , D and E ) are all isomorphic so that in some sense 

each of these algebras has only one basic representation. 

Finally let us point out that the coefficients m. defined by 

(8.10) and occurring in (8.11) can be related directly to the 
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Cartan matrices (6.4) and hence the Dynkin diagram of "g. They 

satisfy 

r 
T, K. . m. = 0, i = 0.. .r ; m. positive integers with 

j=0 1J ^ J no common factor. (8.12) 

Thus the m. constitute the right null vector of the Cartan 

matrix. This characterisation can also be applied to the twisted 

algebras whose Dynkin diagrams were listed at the end of section 

6. 

9 Representation theory and quantum fields 

The representation theory as developed so far has seemed to be 

a straightforward extension of that for ordinary finite dimensional 

Lie algebras g except that the tendency of Dynkin diagrams of Kac 

Moody algebras to have greater symmetry has meant that more 

representations are isomorphic. 

One might have thought that because the physically interesting 

representations are infinite dimensional they would be intractable. 

This is not so. Characters can be defined and a theory developed 

in analogy with the ordinary case leading to new perspectives on a 

variety of combinatorial identities; Rogers-Ramanujan identities, 

MacDonald identities, and so on. What is even more interesting is 

that the methods of quantum field theory furnish means of 

constructing representations of Kac-Moody algebras which have no 

parallel for finite dimensional algebras. The quantum fields 

concerned may be either bosonic or fermionic in character. They 

depend on a complex variable z and are analytic in the 

neighbourhood of the unit circle. The coefficients of z~ in the 

Laurent expansion of these fields constitute bosonic or fermionic 

oscillators respectively. 

The vertex operator construction of dual string theory 

involves an r component bose field Q (z), called the Fubi'ni 

Veneziano field and represents H„ and E_ by the coefficients of z 
n . n 

in the Laurent expansions of iz -rj— and z : e
l a " ^ z . respectively. 

This construction yields all the "basic" or level 1 representations 

of the A , D and E Kac-Moody algebras when the real roots are r r r 
normalised by a2 = 2 and when a certain sign correction factor is 

included (FRENKEL and KAC). Thus the space generated from the 
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highest weight (8.3) is seen to be made up from the Fock spaces of 

the oscillators. A more complicated construction of this type has 

been found for the remaining, non-simply laced Kac-Moody algebras 

(FEINGOLD and FRENKEL). In checking the construction it is crucial 

to take very careful account of normal ordering (denoted by double 

dots above) which is specifically a quantum field theory 

phenomenon. 

The same care must be excercised with the second construction 

well known in particle physics as the quark model for current 

algebras, in order to obtain the c number k. A real finite (d) 

dimensional representation of g, (3.1), t , say, is considered, 

d real fermion fields H (z) are defined on the unit circle of the z 

plane to be either periodic (RAMOND) or antiperiodic; (NEVEU and 

SCHWARZ). Then the T satisfying (4.1a) are given by the 

coefficient of z~ in the Laurent expansion of Ha(z)t "!:Ĥ (z)/2. 
i i ii a p 

The c number is then given by (1/2) Tr(t tJ) =- k 6 J, which is 

essentially the Dynkin index of the representation t. Although 

such representations evidently have positive k they are not 

irreducible in general and some work is needed to calculate the 

highest weights and their possible degeneracy. For example the 

defining representations of the classical Lie algebras yield the 

smallest possible value of 2k/ <\>2
1 namely 1. Hence the quark 

construction then reduces to basic representations but only for the 

orthogonal series is the number of irreducible components finite. 

In the D case two of the basic representations are found if the 

Ramond fields are used and the other two if the Neveu-Schwarz 

fields are used. 

This is an interesting result since the same representations 

were found by the vertex operator constructions above and hence it 

must be possible (with care) to equate the two expressions for the 

generators, one involving boson fields and one involving fermi 

fields. These identities are indeed valid and can be checked 

explicitly and constitute part of Skyrme's fermion boson 

equivalence mentioned in the introduction; (SKYRME). The remaining 

part is the expression of the fermion field as a vertex operator. 

It is amazing that Skyrme's results predated both the current 

algebra and vertex operator constructions in physics. 

The point to be made here (FRENKEL 1981) is that the validity 

of the fermion-boson equivalence can be anticipated from the 

classification of representations of Kac-Moody algebras by highest 
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weights explained in section 8. In all likelihood there will be 

other such identities corresponding to other, yet to be explored, 

quantum field theoretic constructions. 

Another development concerns the introduction of (r+2) 

component "covariant" hose fields instead of the r component 

"transverse" bose fields used above. The vertex operator 

construction can be extended to "Lorentzian algebras" in which the 

simply laced Kac-Moody algebras naturally sit. Lorentzian algebras 

corresponding to self dual even lattices promise to be particularly 

interesting both for mathematics and physics (FRENKEL 1982; 

GODDARD and OLIVE 1983). 

It is also possible to construct a "Virasoro algebra" with 

generators L such that L +d = 0 out of a given highest weight 

representation of a Kac-Moody algebra using a natural quantum field 

theory construction (SUGAWARA; SOMMERFIELD). This leads to further 

constructions (GODDARD and OLIVE 1984; GODDARD, KENT and OLIVE) 

which seem to be relevant to the theory of critical phenomena in 

two dimensional lattice models such as the Ising model and 

generalisations: (FRIEDAN, QIU and SHENKER). 

The aim of this last section (9) has been to briefly review 

what I said in my lectures and to provide an introduction to some 

of the other developments of the theory. No doubt many more are to 

come. 

I would like to thank Peter Goddard for the benefit of the 

discussions I have had with him during the last few years. 
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