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SOME GENERALIZATION OE GODEMENT'S THEOREM ON DIVISION 

Jan Kubarski 

ABSTRACT. Some generalization of Godement's theorem on division 

is found. This generalization characterizes all equivalence relation 

R (on a C^-manifold) such that every abstract class of R has a coun

table number of arcwise connected components and the family of all 

such components is a foliation. Using it, another proof of that cla

ssical Godement's theorem is obtained. 

The classical Godement's theorem on division 13J - which charac

terizes regular equivalence relations R on a C^manifold V - is well 

known: 

THEOREM 1. (Godement t33). Let dimV-sn. The following conditions 

are1 equivalent: 

( 1) In the set VrR there exists a differential structure of an 

n-k-dim. C^-manifold (with the quotient topology), such that the na

tural projection V —•* "V̂  is a submersion. 

(2) (a) RcVxV is a proper n+k-dim. C®-subraanifold of V*V, 

(b) pr,. :R —* V, (x,y) i—• x, is a submersion, a 

The family £ of all abstract classes of an equivalence relation R 

fulfilling (1) has the following properties: 

(1 ) every abstract class of R has a countable number of arcwise 

connected components, 

(2°) the family ¥ of all arcwise connected components of all ab
stract classes of R is a k-dim. foliation. 

Of course, here: each arcwise connected component is equal to a 

connected component. 

Now, we give some generalization of Godement* s theorem which cha

racterizes all equivalence relations fulfilling (1°) and (2°) (in 

particular, all foliations). 

THEOREM 2. Let R be any equivalence relation on a Hausdorff C®-

manifold V with a countable basis. The following conditions are equ

ivalent : 

This paper is in final form and no version of it will be submitted 
for publication elsewhere. 
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(1) the family £ of all abstract classes of R has the above pro
perties (1°) and (2°), 

(2) there exists a subset SLcR such that 
(i) Acrjn, where Zl={(x,x); xeV}, 
(ii) iQ is a proper n+k-dim. C®-submanifold of V/V, 
(iii) pr..j lifiL: fl —*• V is a submersion, 
(iv) if we dnnote, for (x,y)eR, 

Rx:=RH({x}xV), £lxt<VT^rL)~\x), D(x>y)
:Ry - * V (y.t)H^(x,t), 

then we have that the set B, % Cfi^Jn -Q-v is open in the man, -fL-i 
(v) the manifolds R (see lemma below) have a countable num

ber of connected components. 
LEMMA. If iflcR has properties (i)f(iv), then, for each point x^V, 

there exists exactly one C^-manifold R with the set of points R , 
x x 

such that, for each (x,y)€R , 
(a) D(x>y^t^iyla 3̂ . (i.e. is open in Rx), 
(b) B(x y)lJ^Y:^y ~* B(x y)Elfiy5cr^x is a d i f f e o m o rP h ism. 
The manifolds R have the properties: 
(i) D, v ) ^ y —» rlx is a diffeomorphism, 
(ii) S <---* VXv is an immersion, 
(iii) l?x are Hausdorff, 
(iv) if, in addition, the family 7 of all arcwise connected com

ponents of all abstract classes of R is a k-dim. foliation, then the 
mapping Y„:L —> 1L,, y i—» (x,y), is a diffeomorphism for each xeV 

X X X 

(L - the abstract class of R through x equipped with the uniquely 
determined differential structure of an immerse submanifold of V su
ch that each element of 7 contained in Lx is an open subman. of Lx)# 

The very simple proof of this lemma is omitted. 
Proof of theorem 2. (1)4(2). Let us take any nice covering 

{(U^^E11),- ieNJ of 7 L2,p.1B83 and denote by Qx the plaque of the 
chart (U^tf^) which contains x, xgU.. Of course, the covering iU^, 
i€N] of V has the property: 

(*) if x,ygU.nU. and y*Q*, then yco|» i,jeN. 
V/e put , 

^ ^ { ( x ^ ) ^ * ^ x€U., yeQ*} and Sli^USl,. 
• x x ieN x 

We prove that S\ has properties (i)*(v). (1) is evident. To prove 
(ii), it suffices to show that 

1°) iQ^ is open in SI (with respect to the topology induced from 
VXV), 

2°)inii is a proper C®-submanifold of VXV. 
1°) results from the equality Ai«iQ*n(UixUi) which is a conse

quence of (#). To show 2°), we fir^t define, for each chart ( U ^ ^ ) , 
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1 2 the mappings qp.̂  and <j>. in such a way that 
?i- C^itfi)- (x >-» (^(x),^(x))€Ekx E n ~ k ) . 

Next, we put 
v . : ^ - * E n + k , (x,y) tr+ (<pj(x), <p *(:*), <j>J(y)). 

The inverse mapping of v± is 
wi:E>TE

n~^Ek -~*£lif (a,b,c) »-> (cp±"
1(afb)f cf^Cc, b)). 

Now, it is easy to see that 2°) holds (vi is a global chart on Sl±). 
To show condition (iii), it is enough to consider the following com
muting diagram v., _ -_ 

XL ± - ^ * E n /E K 

p r1 , t aii lpr1 
U Jl+ U* 

1 i i i 

for each i€N. To notice condition (iv), we write H ^ t x t x U Qx 

where Nx:=-{ieN.; xel^}. Therefore i € Nx 

Condition (v) follows from property (iv) of Rx from our lemma. 
(2)-» (1). We assume that iftcR fulfils (i)r(v). Let us take the 

embedding u:V —*-Qi f x i—* (x,x). Of course, u*T*ifL (where T^-sKer**, 
o(-» pr^ lift*) is a vector bundle of rank k over V. We define a strong 
homomorphism >c of vector bundles as a superposition 

( T.Y» ^ 

u^-fL — • T'to — > T.O, » T(VXV) -----* TV 
t 5 • * • pr? * 
v ----* .a "Si <=—> vxv — > v . 

x.is a monomorphism because, for xeV, X,x(v)« (3x)^(v),
 V£-Vx v ^ x ' 

where jx:{x$;xV -2*. v, (x,y) i—* y. Thus E:-ImxcTV is a vector subbun-
dle of order k of TV, and E|x-( d x . V ( x , x ) t

T( x, x)
S
x
3' X € V« 

Via bisections TV:L-V """* ̂ r> y ^ (x*y)> xeV, every abstract class 
X X .X> s 

of R is equipped with a differential structure of a manifold. The 
correctness follows from property (i) of the manifolds Rx (seelemmaX 
The manifolds obtained are integral for the distribution E. Indeed, 
for xeV, the inclusion Lx <=-* V is an immersion (because it is the 
superposition^-C5, Kxc^{xj,v-5. V), and - x - x - ( 3 x . V ( x . x ) t T ( x , x Y V 
«E. • Let 7 be the family of all connected components of all manifo
lds Lx obtained above. By the Frobenius' theorem [1,p.863, 7 is a k-
dim. foliation. To conclude this theorem, we need to demonstrate 
that the family 7 is equal to the family of arcwise connected compo
nents of all abstract classes of R» For the purpose, it is sufficie
nt to show that every manifold L is a k-leaf of V with respect to 
all locally arcwise connected topological spaces, i.e. if X is.such 
a space and f:X —> V a continuous mapping such that f 1X3CL, , then 
the induced mapping f:X —* 1^ is continuous, too. Let X and f be as 
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above; take teX and (U,cp) - a chart around y:=f(t) distinguished by 
k YI—k 

*¥ , <j> :U —> R xR . Let Q be an arcwise connected component of U ^ L X 

through y(with respect to the topology induced from V). Q contains 

countably many plaques of the chart (U,cp) since I has - by (v) -

countably many connected components, and each of them - as a connec

ted immerse submanifold of V - has a countable basis. Thus prptcpCQ.il 

is an arcwise connected and countable set in |Rn~ , so it is one-poi

nt. This states that Q is equal to one plaque of the chart (U,<p).TKe 
-1 set f CUOL J is open in X. Let B be the arcwise connected compone-

-1 nt of the set f lUOLxJ, containing x. Of course, B is open in X, 

fCBJcQ and f!B:B —> V|Q=Lx|U
 is continuous. The free choice of t€X 

implies the continuity of f :A —> Lx. o 
REMARK. The connectivity of the manifolds Kx is equivalent (in 

the above theorem) to the fact that £, is a foliation(i.e. every abs

tract class of R is an arcwise connected set)o 9 

REMARK. If Y is the subgroupoid (of the groupoid determined by R) 

, generated by the set 1Q1 fulfilling conditions (i)r(iv) from theorem 

2, then the set Yn(lx}xV), x€V, ia an open-closed subset of R • a 

THEOREM 3. The following conditions are equivalent: 

(1) the family of all abstract.classes of R is a k-dim. foliation, 

(2) there exists a subset A c R such that 

(i)r(iv) as in theorem 2, 

(v') £l> generates R (as a groupoid), 
(vi') the manifolds «Q.X are connected. 

Proof. (1)-»(2). The set .O* constructed in the proof of theorem 2 

fulfils (viO in an evident manner. The connectedness of manifolds S 

implies that (v') follows from the last remark. 

(2) *»( 1 ). It suffices to show that the manifolds Kx are connected. 

Let us take any x €V and yeLx0. Since «Q, generates R, there exist 

points x^, •.•>xn_.j€LXo such that (in the groupoid R) (xQ,y)a 

=(xn->1fy)*...<x1,x2)*(xo,x1) where (xi>xi+1 )€XiXi, i=0,... ,n-1, 

x ay. (vi") implies the existence of curves c^:<Uf1> —>Slx^ such 
that ci(O>(xi,xi), ci(1)=(xi,xi+1)* We define a curve c:<0,n>—• ftXo 
by the formula c(t)=-£• v v x(c.(t-i)) for i^t^i+1 to obtain a co-

\*otxiJ -1 

ntinuous curve joining (x0t
x
0)

 a n d (x0>y)* • 
Theorem 2 enables us to carry out another proof of the classical 

Godement's theorem. 

Proof of theorem 1. (1)4(2) as in Goderaent's proof. 

(2)-» (1). Let us suppose (a) and (b). We notice that cOi:-R fulfi

ls properties (i)r(v) from assertion (2) in theorem 2o Thus, theorem 

2 states that the family ¥ of all connected components of all abstra-
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ct classes of R is a k-dim. foliation. 
Now, we prove that, for each point xeV, there exist a real number 

a>0 and a chart (U,<f) around x distinguished by ¥, such that 
(i) cy:U ̂ IRkxK(a) where K(a):*n (-a,a), 

(ii)T(x)-»(0,0), 
(iii) if L is an abstract class of R and L O U ^ 0 , then LOU is e-

xactly one plaque of the chart (U,cp). 
Let us assume to the contrary that there exists a point xQ€V such 

that, for each real number a>0and each chart (U,<p) around xQ disti
nguished by 7, fulfilling (i) and (ii), we have: there is an abstra
ct class L of R such that the set L O u contains at least two diffe
rent plaques. Take any chart (U,cp) around xQ distinguished by 7 such 
that <j>:U -£^!RkxEn~k and q>(xQ)« (0,0). Let us set 

Ura:«ri(EVn
k(-14)], meN. 

Of course, (um><P
,u

m) *s a chart distinguished by 7, too. Then we fi
nd an abstract class L such that L OU^ contains two plaques CJ and 
%> say Q̂ :-=cp ' DR xlc^l, c£:-=<y 'iR^lcJji, for some o^ cj. Let us 
put ^ ^ ^ ( O f C ^ ) , s»1,2. Of course, 2-̂ Ifo, which means that (xm,x^) 
€R. Besides x® m H>Q0» xQ, s*1,2. Take 

.IV:={(x,y)€VxV-: xeU and ycQ^ 
where 0 denotes the plaque of (U,«p) through x. We prove that tO* is 
open in R. First, we note (as about -fl. in the proof of theorem 2) 
that -fL' is a proper n+k-dim. C^-submanifold of V*V. Thus ifi is an 
n+k-dim. proper submanifold of the n+k-dim. manifold R, so it is 
open in R. Further, since ( x ^ x ^ ^ X T and (*m>xm) -^ ̂ o p> (->-0iX0), 
therefore (x ,x )e.O/, which leads to a contradiction because x 
6 Q X Q implies (xo,xQ)eA. 

From the above it follows that there exists a C^-atlas on V con
sisting of some chart (U,<f) distinguished by 7 such that (i)r(iii) 
hold for a«a<p • Let jf be such an atlas. With the help of jf, we shall 
construct a C^-atlas on the topological space YfR , such that the 
projection 3f:V —• V,R is a submersion. First, from the equality 
rc~ WIU)] = pr^Epr^i tUllt UCV, we get the openess of the projection 
ft. Next, taking a chart (U,<y)6c/f we define <j:U —*> K(af), where U 
=?r[Ul, in such a way that the diagram 

U 2 > u 

(*) k ^ P2 J* 
IT*K(aT) — ^ K ( a f ) , p2(xfy)«yf 

comutes. Of course, we must put <f (L) s«P2(-f (x)) for xcUHL, LeU. , 
The correctness follows from the fact that U O L contains exactly one 
plaque. The continuity of cj> follows from the equality <y [AJ--
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=OrC<y" [R XA]], ACK(a^), whereas the openness - from <plBl-= 
s s P 2 f ? c ^ 1 tB3n UJ3, BCU. The b i j e c t i v i t y of <? i s ev ident. In the end, 

we take two charts (U,<p) and (W,<J/)e c/f such that U O W ^ . We prove 

that <|/©<jf~ i s of C - c l a s s . For the purpose, we put ®:»lt"" tUnW]<XV. 

We not ice that ® i s saturated by abstract c l a s s e s of R, and JU0] 

»JTC0nUl «jrt®nW] » U O i Now, we prove - a u x i l i a r i l y - that 

cylUnw^lQrVjQ-^cpltfnWJcXiR11^ i s a submersion. In order to do t h i s , 

we consider the diagram 

((0nu)xy)nR ^pr^Qnu 
(**) p r J s u b . 1sub.l<?on®nU ^ S w ^ ™ ^ 

2 i $«^ri0 „ ~ *J, --submersion) 

0 • • fScpiunw] 
Prom (*) we get the submersivity of <j>©tfl©nU-*<f IUn W«]ri0nu, whe

reas from diagram (*#) - the submersivity of 9«JT|0O Changing <f to J/, 
we get the smoothness of ip©Jil®. To prove that of 4>*̂  , i t i s suf f i
c ient to analyse the diagram below: 

^ ^ Ч [UП Й] 
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