WSGP 7

Manuel de León; Paulo R. Rodrigues
 Higher order almost tangent geometry and non-autonomous Lagrangian dynamics

In: Jarolím Bureš and Vladimír Souček (eds.): Proceedings of the Winter School "Geometry and Physics". Circolo Matematico di Palermo, Palermo, 1987. Rendiconti del Circolo Matematico di Palermo, Serie II, Supplemento No. 16. pp. [157]--171.

Persistent URL: http://dml.cz/dmlcz/701419

Terms of use:

(C) Circolo Matematico di Palermo, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

```
HIGHER ORDER ALMOST TANGFNT GEOMETRY AND NON-AUTONOMOUS LAGRANGIAN DVNAMICS
```


Abstract

This paper is a secuel of a previous article |DL?1| . The reneralize the intrinsical formulation of non-autonomous Larrancian dynamics for Larrannians dependinn on hirher order derivatives with respect to the time. The study is develoned from the almost tancent qeometry point of view. Some reometric structures are examined. The hirher order Poincaré-Cartan theory is nresented in terms of the al most tancrent structures.

Key words: Almost tancrent-qeometry, Larranrian dynamics,non-autonomous. Mathematical A.M.S. Classification: 58F/70H.

1.- Introduction.

In a previous naner (de León \& Roतriques (see |DLR1|)) we have exami ned the intrinsical description of the non-autonomous (or time denen dent) Larran*ian formalism in the framework of the almost-tancent qeometry (see Clark \& Bruckheimer $|C B|$). We have seen there, for instance, that the theory of connections proposed by frifone (|f1|, |f2|) is more simpler than the theory for the autonomous (or time-indenendent) situation. Also, the intrinsical version of the Poincaré-Cartan form in terms of the almost-tancent structure was investirated (see also the paper of Cramnin, Prince \& Thomnson |CPT|).
The nurnose of the present article is the extension of our studv to the formalism of non-autonomous Larrancians hiqher-order derivatives. The study of higher order theories, from some different noint of views, has been object of a certain number of authors: for examnle,

 $|k|$, Krunka $|K R|$, Shadwick $|S|$, Tulczview $|T 1|,|T 2|$. In the León \& Rodrimues \mid DLP $2 \mid$, for examnle, we have clarified how the autonomous hiaher order situation is formulated in terms of the almost tancent reometry machinery (we suqrest to the reader the naner bv Crampin, Sarlet \& Cantrijn $|C S C|$; where a different anroach is presented, ri
ven emphasis on the role of the higher order differential equations). A non-autonomous (resp. autonomoús) Lagrangian formalism for a higher order particle Mechanics is given by a real smooth (C^{∞}) function L defined on the jet bundle $j^{k}(R, M)$ of all smooth functions from R to M (resp. on the bundle $J_{0}^{k}(R, M)$ of all smooth functions from R to M with the source at the origin $O \varepsilon R$). Here, k is the highest order of derivation involved in the variables from which L is dependent and 11 is the configuration manifold. As these bundles may be identified with $\operatorname{RXT}^{k} \mathrm{M}$ and $T^{k} M_{M}$ respectivelv, where ${ }_{T} k_{M}$ is the tangent -bundle of order k of 11 , we may transport the geometrical structures intrinsically defined on $T^{k} M$ to $J^{k}(R, M)$. We use this fact to give the corresponding intrinsical formulation on $J^{k}(R, M)$.
The present paper is organized as follows. In section 2 , we give so me basic definitions and results necessary for the development of the theory. In section 3 , we characterize the semisprays of higher order by means of the higher order almost-tangent geometry. In section 4 , we introduce a kind of connections (called dynamical connec tions) on the fibration $J^{k}(R, M) \rightarrow J^{k-1}(R, M)$. Section 5 and 6 are de voted to study the relationship between senisprays and dynamical :connection. Finally, in section 7, we show that the Poincare-Cartan 2form may be constructed by using the almost tangent structure of -higher order and prove that there exists a dynamical connection who se paths are solutions of the generalized Lagrange equations.
1.- Notations, definitions and some results.

Troughout this paner it is assumed that alf differential structures are of C^{∞} - class (smooth). Let R be the field of real numbers.M a m-dimensional manifold and (RXI; p, R) the corresponding (trivial) fibred manifold. By Sec (RxM) we denote the set of all sections of (RxM, p, R). Locally (RXI) is characterized by coordinates (t, y^{A}), $1 \approx A \leqslant m$. The manifold of k-jets of sections sesec (Rxil), denoted by $J^{k}(R, M)$ is locally given by coordinates of type ($t, y^{A}, y_{1}^{\Lambda}, \ldots, y_{k}^{A}$), $1 \leqslant k<\infty$ (when $k=0$, the $J^{0}(R, M)=R x M$). If $s \in S e c$ (RxM) then $s^{k}(t)$ or j_{t}^{k} s denotes the corresponding k-jet of s at $t \in R$. By $\alpha^{k}: j^{k}(R, M) \longrightarrow R$, $B^{k}: J^{k}(R, M) \rightarrow M$ and $\pi^{k}: J^{k}(R, M) \longrightarrow R x M$, we denote, respectively, the canonical projections $s^{k}(t) \rightarrow t, s^{k}(t) \rightarrow s(t)$ and $s^{k}(t) \longrightarrow(t$, $s(t))$. The map $s^{k}: R \longrightarrow J^{k}(R, I 1), t \longrightarrow s^{k}(t)$, such that $s^{k}(t) \varepsilon \operatorname{Sec}\left(J^{k}(R X I)\right.$, α^{k}, R) is called k-jet prolongation (or extension) of $s \varepsilon \operatorname{Sec}$ (RxM). If $s \varepsilon \operatorname{Sec}(R x M)$ and $s^{k}(t)$ is the corresponding k-jet of s at $t \in R$ then locally we have:

$$
y^{\Lambda}=s^{\Lambda}(t), y_{i}^{\Lambda}=\frac{1}{i} \frac{d^{i}}{d t^{i}} s^{\Lambda}(t), 1 \leqslant i \leqslant k
$$

The factor $1 / i!$ appears only for technical reasons. We may adopt the folloring coordinate svstem for $\exists^{k}(R, M):\left(t, q^{A}, q_{1}^{A}, \ldots, G_{k}^{A}\right)$, where $q^{A}=S^{\Lambda}(t), q_{i}^{A}=\left(d^{i} / d t^{i}\right) s^{A}(t), 1 \leqslant i \leqslant k$. Clearly, we have:

$$
q^{\Lambda}=(i!) y_{i}^{A}, 0 \leqslant i \leqslant k, \quad 1 \leqslant A \leqslant m .
$$

As (RXM, p, R) is a trivial bundle we may identify maps from R to M with sections of (RxIl, P,R) as well as their k-jets. Thus we put $J^{k}(R X M)=J^{k}(R, M) \quad(=$ the k-jet manifold of all maps from R to $M)$. Furthermore, we notice that $J^{k}(R, M)$ can be identify with $R_{M} M_{M}$ in a natural way by the map $s^{k}(t) \longrightarrow\left(t,(d / d t)(s(t)), \ldots,\left(d^{k} / d t^{k}\right)(s(t))\right.$, where T_{M} is the tangent bundle of order k of M, that is, $T^{k}{ }_{M}=J_{0}^{k}(R, M)$ is the k-jet bundle of all maps from R to M with source at the origin $0 \varepsilon R$.
Let $g: J^{k}(R, M) \longrightarrow R$ be a smooth function. Thus $d T$ is the Tulczjew's operator which maps g on a function $d_{T} g$ on $J^{k+1}(R, M)$ locally expressed by

$$
\begin{equation*}
d_{T} g\left(t, y^{A}, \ldots, y_{k}^{A}\right)=\frac{\partial g}{\partial t}+\sum_{i=0}^{k}(i+1) y_{i+1}^{A} \frac{\partial g}{\partial v_{i}^{A}} \quad\left(y_{0}^{A}=y^{A}\right) \tag{2.1}
\end{equation*}
$$

(for an intrinsical definition of d_{T} see |DLR2|, n.80).
Definition (2.1). Let N be a ($k+1$ m-dimensional manifold. An endomor phism $S: T N \longrightarrow T N$ such that rank $S=k m$ and $S^{k+1}=0$ is called almost tangent structure (of order k). The couple (N, S) is said almost tangent manifold (of order k).
A first interesting result says that for all manifold II its tangent bundle TM is endowed with an almost tangent structure (see Godbillon $|G|)$. Furthermore, for any integer k, there exists a family of endomor phisms $J_{r}: T\left(T^{k} M\right) \longrightarrow T\left(T^{k} M\right), 1 \leqslant r \leqslant k$, such that $J_{1}: T\left(T^{k} M\right) \longrightarrow T\left(T^{k}{ }_{M}\right)$ is an almost tangent structure (of order k) on $T^{k} M$. For $1 \leqslant r \leqslant k$, one has

$$
J_{r}=\left(J_{1}\right)^{r}
$$

(see de León \& Rodrigues \mid DLR2|, p.24-31). For a local coordinate sys tem $\left(y^{A}, y_{1}^{A}, \ldots, y_{k}^{A}\right)$ the endomorphism J_{r} has the following expression:

$$
\begin{equation*}
J_{r}=\sum_{i=0}^{k m r} \frac{\partial}{\partial y_{r+i}^{\Lambda}} \otimes d v_{i}^{\Lambda} \tag{2.2}
\end{equation*}
$$

Also, there exists on $T{ }^{k} M$ a family of vector fields $C_{r}, 1 \leqslant r \leqslant k$, loca lly given by

$$
\begin{equation*}
C_{r}=\sum_{i=0}^{k-r}(i+1) y_{i+1}^{A} \frac{\partial}{\partial y_{r+i}^{A}} \tag{2.3}
\end{equation*}
$$

When $r=1$, then C_{1} is called the (generalized) Liouville vector field. One has

$$
C_{r}=J_{1} C_{r-1}\left(\text { or } C_{r}=J_{r-1} C_{1}\right), r \geqslant 2 .
$$

Definition (2.2). Let ξ, be a vector field on $T^{k} 11$. We say that ξ is a semispray (or a $(k+1)$ th order different equation) if $J_{1} \xi=C_{1}$. A curve $s: R \longrightarrow M$ is called a path of ξ if s^{k} is an integral curve of ξ, that is,

$$
(d / d t) s^{k}=\xi \circ s^{k} .
$$

Therefore, s is a path of ξ if and only if verifies the following system of differential equations:

$$
\frac{1}{k!} \frac{d^{k+1}}{d t^{k+1}} s^{A}=\xi^{A}\left(s^{A},(d / d t) s^{A}, \ldots,\left(d^{k} / d t^{k}\right) s^{A}\right)
$$

where the semispray ξ has the local expression

$$
\begin{equation*}
\xi=\sum_{i=0}^{k-1}(i+1) y_{i+1}^{\Lambda} \quad \frac{\partial}{\partial y_{i}^{A}}+\xi^{\Lambda} \frac{\partial}{\partial y^{\Lambda}(k)} \tag{2.4}
\end{equation*}
$$

(for further details, see \mid DLR2|, p. 54-58).
(Let us remark that if we adopt the coordinates ($t, q^{A}, \ldots, q_{k}^{n}$), then s is a path of ξ if and only if it verifies the following system of differential equations:

$$
\frac{d^{k+1}}{d t^{k+1}} s^{A}=\bar{\xi}^{A}\left(s^{A},(d / d t) s^{A}, \ldots,\left(d^{k} / d t^{k}\right) s^{A}\right)
$$

where ξ is locally given by

$$
\left.\xi=\sum_{i=0}^{k-1} q_{i+1}^{A} \frac{\partial}{\partial q_{i}^{A}}+\bar{\xi}^{A} \frac{\partial}{\partial q_{k}^{A}}\right)
$$

Let us remark that on $\mathrm{T}^{\mathrm{k}} \mathrm{M}$ there is defined an appropiate exterior calculus induced by J_{1} : an inner product on p-forms

$$
i_{J_{1}} \omega\left(x_{1}, \ldots, x_{p}\right)=\sum_{i=1}^{p} \omega\left(x_{1}, \ldots, J_{1} x_{i}, \ldots, \ldots, x_{n}\right)
$$

and an exterior differentiation $d_{J_{1}}$ defined by $d_{J_{1}}=i_{J_{1}} d-d i_{J_{1}}$.
A proof of the following result may be found in |DLR2|, p.95-99. Theorem. Let $L: T^{k} M \longrightarrow R$ be a regular Lagrangian (that is, the Hessian matrix $\left(\partial^{2} L / \partial y_{k}^{A} \partial y_{k}^{B}\right)$ is of maximal rank everywhere). Consider the following closed 2-form on $T^{2 k-1} M$

$$
\omega_{L}=-d_{J_{1}} L+\frac{1}{2!} d_{T}{d d_{J_{2}}}_{L}^{L}-\frac{1}{3!} d_{T}^{2} d_{J_{3}} L+\ldots+(-1)^{k} \frac{1}{k!} d_{T}^{k-1}{d d_{J_{k}}}_{L}^{L}
$$

and the intrinsical equation

$$
\begin{equation*}
i_{\xi}{ }^{\omega}{ }_{L}=d E_{L}, \tag{2.5}
\end{equation*}
$$

where

$$
E_{L}=C_{1} L-\frac{1}{2!} d_{T}\left(C_{1} L\right)+\frac{1}{3!} d_{T}{ }^{2}\left(C_{3} L\right)+\ldots+(-1)^{k-1} \frac{1}{K!} d_{T}^{k-1}\left(C_{k} L\right)-L .
$$

Then
(1) ω_{L} is a symplectic form on $T^{2 k-1} M_{1}$,
(2) The vector field ξ given by (2.5) is a semispray on $T^{2 k-1} M$, that is, $J_{1} \xi=C_{1}$,
(3) The paths of ξ are the solutions of the Lagrange eq̣uations

$$
\sum_{i=0}^{k}(-1)^{i} \frac{d^{i}}{d t^{i}}\left(\frac{\partial L}{\partial q_{i}^{A}}\right)=0 .
$$

3.- The generalized evolution space.

We have remärked that $J^{k}(R, M)$ may be identified with $R x T^{k} M$ ahd so we may transport the geometric structures needed to develop the auto nomous Lagrangian formalism on $T^{k} M$ to $J^{k}(R, M)$ via this identifica tion. We call $J^{k}(R, M)$ the (generalized) evolution space. Thus we have the following induced endomorphisms on $J^{k}(R, M)$:

$$
\bar{J}_{r}=J_{r}-C_{r} \otimes d t, \quad 1 \leqslant r \leqslant k .
$$

Locally :

$$
\bar{J}_{r}=\sum_{i=0}^{k-r} \partial / \partial y_{r+i}^{A} \otimes d y_{i}^{A}-\left(\sum_{i=0}^{k-r}(i+1) y_{i+1}^{A} \partial / \partial y_{r+i}^{A}\right) \otimes d t
$$

and it is clear that we may define in a similar way as we do for the autonomous case the operators $i_{\bar{J}_{r}}$ and $d_{\bar{J}_{r}}$. The following equalities are easily obtained:

$$
\begin{array}{lll}
\bar{J}_{r}(\partial / \partial t)=-C_{r} \\
\bar{J}_{r}\left(\partial / \partial y_{i}^{A}\right)=J_{r}\left(\partial / \partial y_{i}^{A}\right)= & \partial / \partial y_{r+i}^{A}, & r+i \leqslant k, \\
r+i \geqslant k .
\end{array}
$$

Let \bar{J}_{r}^{*} be the adjoint operator induced by \bar{J}_{r} on the exterior
algebra $\Lambda\left(J^{k}(R, M)\right)$ of $J^{k}(R, M)$. Then we have

$$
\begin{array}{ll}
\overline{\mathrm{J}}_{r}^{*}(d t)=0, & i<r, \\
\overline{\mathrm{~J}}_{r}^{*}\left(d y_{i}^{\Lambda}\right)= & \bar{\theta}_{i-r}^{\Lambda}, r \leqslant i \leqslant k+r-1,
\end{array}
$$

where

$$
\begin{equation*}
\bar{\theta}_{i}^{A}=d y_{i}^{A}-(i+1) y_{i+1}^{A} d t, 0 \leqslant i \leqslant k-1 \tag{3.1}
\end{equation*}
$$

(we remark that, if we adopt the coordinates ($t, q^{A}, \ldots, q_{k}^{A}$) introduced in section 2 , then we put

$$
\theta_{i}^{A}=d q_{i}^{A}-q_{i+1}^{A} d t, \quad 0 \leqslant i \leqslant k-1,
$$

and we have

$$
\left.\theta_{i}^{A}=i!\left(\bar{\theta}_{i}^{A}\right)\right)
$$

Definition (3.1). A vector field ξ on $J^{k}(R, M)$ is said a semispray (or ($k+1$)-th differential equation), if and only if $\left\langle\xi, \theta_{i}^{A}\right\rangle=0$ and $\langle\xi, d t>=1,0 \leqslant i \leqslant k-1$.

We can easily prove that a semispray ξ is locally given by

$$
\begin{equation*}
\xi=\partial / \partial t+\sum_{i=0}^{k-1}(i+1) y_{i+1}^{A} \partial / \partial y_{i}^{A}+\xi^{A} \partial / \partial y_{k}^{A} \tag{3.2}
\end{equation*}
$$

Therefore, we have
Proposition (3.1). A vector field ξ on $J^{k}(R, M)$ is a semispray if and only if $J_{1} \xi=C_{1}$ and $\bar{J}_{1} \xi=0$.
Definition (3.2). Let ξ be a semispray on $J^{k}(R, M)$. A curve $s: R \longrightarrow M$ is said a path of ξ if s^{k} is an integral curve of ξ. From (3.2) we deduce that s is path of ξ if and only if s satis fy the following system of differential equations:

$$
\begin{equation*}
\frac{1}{k!} \frac{d^{k+1} v^{A}}{d t^{k+1}}=\xi_{k}^{A} \tag{3.3}
\end{equation*}
$$

(Let us remark that, if we adopt the coordinates $\left(t, q^{A}, \ldots, q_{k}^{A}\right)$, then s is a path of ξ if and only if it satisfies the following system of differential equations:

$$
\frac{d^{k+1}}{d t^{k+1}} s^{\mathrm{A}}=\bar{\xi}^{\mathrm{A}}
$$

where

$$
\left.\xi=\partial / \partial t+\sum_{i=0}^{k-1} \Upsilon_{i+1}^{\Lambda} \partial / \partial ণ_{i}^{\Lambda}+\bar{\xi}^{\Lambda} \partial / \partial ণ_{k}^{\Lambda}\right)
$$

4.-Dynamical connections on $J^{k}(R, M)$.

The tensor fields J_{r} and J_{r} on $J^{k}(R, I M)$ permit us to give a characterization of a kind of connections for the fibration $J^{k}(R, M) \longrightarrow J^{k-1}(R, M)$.
Definition (4.1). By a dynamical connection on $J^{k}(R, M)$ we mean a tensor field Γ of type (1.1) on $J^{k}(R, M)$ satisfying

$$
\begin{equation*}
\Gamma \bar{J}_{k}=-\bar{J}_{k}, \Gamma J_{k}=-J_{k}, \bar{J}_{1} \Gamma=J_{1} \Gamma=J_{i} . \tag{4.1}
\end{equation*}
$$

By a straigthforward computation from (4.1) we deduce that the local expressions of Γ are

$$
\begin{aligned}
& \Gamma(\partial / \partial t)=-\sum_{i=1}^{k} i v_{i}^{A} \partial / \partial v_{i-1}^{A}+\Gamma \Gamma^{A} \partial / \partial y_{k}^{A} \\
& \Gamma\left(\partial / \partial y_{i}^{A}\right)=\partial / \partial y_{i}^{A}+\Gamma(i-1) B_{A}^{B} \cdot \partial / \partial y_{k}^{A}, \quad 0 \leqslant i \leqslant k-1, \\
& \Gamma\left(\partial / \partial y_{k}^{A}\right)=-\partial / \partial y_{k}^{A} .
\end{aligned}
$$

The functions $\Gamma^{A}, \Gamma_{A}^{B}$ will be called the components of Γ. From the local expressions above, it is easy to prove that $\Gamma^{3}-\Gamma=0$ and rank $\Gamma=2 \mathrm{~km}$. So Γ is an $f(3,-1)$-structure on $J^{k}(R, M)$ (see $\left.|Y I|\right)$. Now, we associate to Γ two canonical operators 1 and m given by

$$
1=\Gamma^{2}, \quad m=-\Gamma^{2}+I
$$

Then we have

$$
1^{2}=1, m^{2}=m, \quad l m=m l=0,1+m=I,
$$

and,so, 1 and m are complementary projectors locally given by

$$
\begin{align*}
& 1(\partial / \partial t)=-\sum_{i=1}^{k} y_{i}^{A} \partial / \partial y_{i-1}^{A}-\left(\Gamma^{B}+\sum_{i=1}^{k} y_{i}^{A}(i-1) B_{A}^{B}\right) \partial / \partial y_{k}^{B}, \\
& 1\left(\partial / \partial y_{i}^{\Lambda}\right)=\partial / \partial y_{i}^{\Lambda}, m\left(\partial / \partial y_{i}^{\Lambda}\right)=0, \tag{4.2}
\end{align*}
$$

$$
m(\partial / \partial t)=\partial / \partial t+\sum_{i=1}^{k} i y_{i}^{A} \partial / \partial y_{i-1}^{A}+\left(\Gamma^{B}+\sum_{i=1}^{k} i y_{i}^{A} \Gamma(i-1) B\right) \partial / \partial y_{k}^{B}
$$

$$
0 \leqslant i \leqslant k, \quad 1 \leqslant A, B \leqslant m .
$$

If we put $L=\operatorname{Im} 1, M=\operatorname{Im} m$, then we have that L and M are complementary distributions on $J^{k}(R, M)$, that is,

$$
T J^{k}(R, M)=M \oplus L
$$

Furthermore, from (4.2), we deduce that L is ($k+1$)m-dimensional and M 1-dimensional. In fact, L is locally spanned by $\left\{\partial / \partial y_{i}^{A}, 0 \leqslant i \leqslant k\right\}$ and M is globally spanned by the vector field $\xi=m(\partial / \partial t)=\partial / \partial t+\sum_{i=1}^{k} i y_{i}^{A} \partial / \partial y_{i-1}^{A}+\left(\Gamma^{B}+\sum_{i=1}^{k} i y_{i}^{A} \Gamma(i-1) B, \quad \partial / \partial y_{k}^{A}\right.$.

From (4.3) we deduce that ξ is a semispray of type 1 on $J^{k}(R, M)$ which will be called the canonical semispray associated to Γ.

Since we have $\Gamma^{2} 1=1$ and $\Gamma m=0$, then Γ acts on L as an almost product structure operator and trivially on M. Because $M=$ Ker Γ, Γ is said to be an $f(3,-1)$-structure of rank $(k+1) m$ and paralleliza ble kernel.

Now, we put

$$
h=\frac{1}{2}(I+\Gamma) 1, v=\frac{1}{2}(I-\Gamma) 1
$$

Then we have
$h \xi=0, h\left(\partial / \partial y_{i}^{A}\right)=\partial / \partial y_{i}^{A}+(1 / 2) \Gamma(i){ }_{A}^{B} \partial / \partial y_{k}^{B}, h\left(\partial / \partial y_{k}^{A}\right)=0$,
$v \xi=0, v\left(\partial / \partial y_{i}^{A}\right)=(-1 / 2) \Gamma$ (i) $\mathrm{B}_{\mathrm{A}}^{\mathrm{A}} \partial / \partial \mathrm{y}_{\mathrm{k}}^{\mathrm{B}}, \mathrm{v}\left(\partial / \partial y_{k}^{A}\right)=\partial / \partial y_{k}^{A}$,
$0 \leqslant i \leqslant k-1, \quad 1 \leqslant A, B \leqslant m$.
If we put $H=\operatorname{Im} h$ and $V=I m v$, then we have $L=H \oplus V$, where V is the vertical distribution defined by the fibration $J^{k}(\Omega, M) \rightarrow J^{k-1}(R, M)$. Hence, we deduce that

$$
T J^{k}(R, M)=M \oplus L=M \oplus H \oplus V
$$

(So, Γ defines, in fact, a connection on the fibration
$\left.J^{k}(R, M) \longrightarrow J^{k-1}(R, M)\right)$.
Let $H_{i}^{A}=h\left(\partial / \partial y_{i}^{A}\right), v^{A}=\partial / \partial y_{k}^{A}, 0 \leqslant i \leqslant k-1$. Then, from (4.4), we have

$$
\begin{align*}
& \Gamma \xi=0, \Gamma H_{i}^{A}=H_{i}^{A}, \Gamma V_{i}^{A}=-V_{i}^{A}, \\
& \mathrm{~h} \xi=0, h H_{i}^{A}=H_{i}^{A}, h V_{i}^{A}=0, \tag{4.5}\\
& \mathrm{~V} \xi=0, \quad \mathrm{H}_{i}^{A}=0, \mathrm{v} \mathrm{~V}_{\mathrm{i}}^{\mathrm{A}}=\mathrm{V}_{\mathrm{i}}^{\mathrm{A}},
\end{align*}
$$

From (4.5) we deduce that a dynamicảl connection Γ on $J^{k}(R, M)$ induces an almost product structure on $J^{k}(R, M)$ given by three compleg mentary distributions for the eigenvalues $0,+1$ and -1 . Furthermore, $\left\{\xi, H_{i}^{A}, v_{i}^{A}\right\}$ is a local basis of vector fields on $J^{k}(R, M)$. In fact , $M=\langle\xi\rangle, H=\left\langle H_{i}^{A}\right\rangle, V=\left\langle V_{i}^{A}\right\rangle ;\left\{\xi ; H_{i}^{A}, V_{i}^{A}\right\}$ is called an adapted basis to the $f(3,-1)$-structure defined by Γ. An easy computation in local coordinates whows that the dual basis of 1 -forms is given by
$\left\{d t, \theta_{i}^{A}, \psi^{A}\right\}$, where
$\psi^{A}=-\left(\Gamma^{A}+\frac{1}{2} \sum_{i=1}^{k} i y_{i}^{B} \Gamma^{(i-1)} \underset{B}{A}\right) d t-\frac{1}{2} \underset{i=1}{k} \Gamma_{B}^{(i-1)} A_{B} d y_{i-1}^{B}+d y_{k}^{A}$:
Definition (4.2). H (respe $M \oplus H$) will be called the strong (resp. weak) horizontal distribution.
Remark. Since $J^{k}(R, M)$ is a fibred manifold over $J^{r}(R, M), 1 \leqslant r \leqslant k m$, we may consider connections on the fibration $J^{k}(R, M) \longrightarrow J^{r}(R, M)$, $1 \leqslant r \leqslant k-1$. The study of this type of connections will be elaborated in a forthcoming paper
5.- Paths of a dynamical connection.

Definition (5.1). A curve s in M is called a path of a dynamical connection Γ on $J^{k}(R, M)$ if and only if s^{k} is a weak horizontal curve in $J^{k}(R, M)$, that is, the tangent vector $s^{k}(t)$ belongs to $(M \oplus H){ }_{s}{ }_{(t)}$, for every $t \in R$.
Since a tangent vector X to $J^{k}(R, M)$ is in $M \oplus H$ if and only if $\psi^{\mathrm{A}}(\mathrm{X})=0$, we deduce, from (4.4), that s is a path of Γ if and only if satisfy the following system of differential equations:

$$
\begin{equation*}
\frac{1}{k!} \frac{d^{k+1} y^{A}}{d t^{k+1}}=\Gamma^{A}+\sum_{i=1}^{k} \frac{1}{(i-1)!} \Gamma^{(i-1) A} \frac{d^{i} y^{B}}{d t^{i}} \tag{5.1}
\end{equation*}
$$

From (3.3), (4.3) and (5.1), we easily deduce the following Proposition (5.1). A dynamical connection C on $\mathrm{J}^{k}(\mathrm{R}, \mathrm{M})$ and its associated semispray ξ have the same paths.
6.- Semisprays and dynamical connections on $\mathrm{J}^{\mathrm{k}}(\mathrm{R}, \mathrm{M})$.

In this section, we prove that to each semispray ξ of type 1 on $J^{k}(R, M)$ there exists canonically associated a dynamical connection. Let ξ be a semispray of type 1 on $J^{k}(R, M)$ and suppose that ξ is locally given by
$\xi=\partial / \partial t+y_{1}^{A} \partial / \partial y^{A}+2 y_{2}^{A} \partial / \partial y_{1}^{A}+\ldots+k y_{k}^{A} \partial / \partial y_{k-1}^{A}+\xi^{A} \partial / \partial y_{k}^{A}$
Then a direct computation from (6.1) shows that

$$
\begin{align*}
& |\xi, \partial / \partial t|=-\partial \xi^{A} / \partial t \partial / \partial y_{k}^{A}, \\
& \left|\xi, \partial / \partial y_{i}^{A}\right|=-\partial \xi^{B} / \partial y^{A} \partial / \partial y_{k}^{B}, \tag{6.2}\\
& \left|\xi, \partial / \partial y_{i}^{A}\right|=-i \partial / \partial y_{i-1}^{A}-\partial \xi^{B} / \partial y_{i}^{A} \partial / \partial y_{k}^{B}, \quad 1 \leqslant i \leqslant k .
\end{align*}
$$

Now, put

$$
\Gamma=-\frac{2}{k+1} L_{\xi} \mathcal{F}_{1}+\frac{k-1}{k+1}(I-\xi \otimes d t)
$$

From (6.2),$_{k}$ we have

$\Gamma\left(\partial / \partial y_{i}^{A}\right)=\partial / \partial y_{i}^{A}+\frac{2}{k+1} \partial \xi^{B} / \partial y_{i+1}^{A} \partial / \partial y_{k}^{B}, \quad 0 \leqslant i \leqslant k-1$,
$\Gamma \partial\left(\partial / \partial y_{k}^{A}\right)=-\partial / \partial y_{k}^{A} \quad$.
From (6.3), we deduce that Γ is a dynamical connection on $J^{k}(R, M)$ whose associated semispray $\tilde{\xi}$ is locally qiven by

$$
\widetilde{\xi}=\partial / \partial t+\sum_{i=1}^{k} i y_{i}^{A} \partial / \partial y_{i-1}^{A}+\tilde{\xi}^{A} \partial / \partial y_{k}^{A},
$$

where

$$
\tilde{\xi}^{\mathrm{A}}=\frac{3-\mathrm{k}}{\mathrm{k}+1} \xi^{\mathrm{A}}
$$

Let us remark that, if $k=1$, then $\Gamma=-L_{\xi} \mathcal{F}$ and $\tilde{\xi}=\xi$. This case has been discussed in |DLR1| ; in the sequel ${ }^{\xi}$ we only consider the case $k \geqslant 2$.
Since $\tilde{\xi}$ is different from ξ, it is neccessary to modify Γ in order to obtain a dynamical connection \tilde{r} whose associated semispray is, precisely, ξ. To do this, we put

$$
\tilde{\Gamma}=\Gamma-(\tilde{\xi}-\xi) \otimes d t
$$

A simple computation shows that

$$
\begin{align*}
& ((\tilde{\xi}-\xi) \otimes d t)(\partial / \partial t)=\frac{2(1-k)}{k+1} \xi^{A} \partial / \partial y_{k}^{A} \tag{6.4}\\
& ((\tilde{\xi}-\xi) \otimes d t)\left(\partial / \partial y_{i}^{A}\right)=0, \quad 0 \leqslant i \leqslant k
\end{align*}
$$

From (6.4), we easily deduce the following.
Proposition (6.1). $\tilde{\Gamma}^{\mu}$ is a dynamical. connection on $J^{k}(R, M)$ whose associated semispray is, precisely, ξ. (Obviously, for $k=1$, we have $\left.\tilde{\Gamma}=\Gamma=-L_{\xi} \mathcal{\Psi}\right)$.
7.- The generalized time-depending Poincaré-Cartan form.

Let $L: J^{k}(R, M) \longrightarrow R$ be a non-autonomous reqular Larrancian of order k on M, that is, the Hessian matrix $\left(\partial^{2} L / \partial y_{k}^{A} \partial y_{k}^{B}\right)$ is non-singular.

As it is well-known, the Poincaré-Cartan 1-form determined by L is the 1 -form θ_{L} on $J^{2 k-1}(R, M)$ qiven by

$$
\begin{equation*}
\Theta_{L}=\sum_{i=1}^{k} p_{A}^{i} d q_{i-1}^{A}-E_{L} d t \tag{7.1}
\end{equation*}
$$

where

$$
\begin{equation*}
p_{A}^{i}=\sum_{j=0}^{k-i}(-1)^{j}\left(d_{T}\right)^{j}\left(\partial L / \partial q_{i+j}^{A}\right), \quad 1 \leqslant i \leqslant k, \tag{7.2}
\end{equation*}
$$

and

$$
E_{L}=\sum_{i=1}^{k} q_{i}^{A} p_{A}^{i}-L
$$

Here, $\left\{{\underset{A}{A}}_{i}^{i}, 1 \leqslant i \leqslant k\right\}$ are the generalized Jacobi-Ostroqradsky momentum coordinates and E_{L} is the Hamiltonian energy correspondina to L . Taking into account (2.1) and (3.1), we easily deduce that θ_{L} can be re-written as
$\theta_{L}=d \bar{J}_{1} L-\frac{1}{2!} d_{T}\left(d_{\bar{J}_{2}} L\right)+\frac{1}{3!} d_{T}{ }^{2}\left(d_{J_{3}}^{L}\right)-\ldots+(-1)^{k} \frac{1}{(k-1)!} d_{T}^{k-1}\left(d_{\bar{J}_{k}}^{L}\right)+L d t$,
and the Hamiltonian enerry becomes
$E_{L}=C_{1} L-\frac{1}{2!} d_{T}\left(C_{2} L\right)+\frac{1}{3!} d_{T}^{2}\left(C_{3} L\right)-\ldots+(-1)^{k} \frac{1}{(k-1)!} d_{T}^{k-1}\left(C_{k} L\right)-L \quad$.
Consequently, the Poincaré-Cartan 2-form is riven by

$$
\Omega_{L}=d \theta_{L}
$$

Then, from (7.1), we have

$$
\begin{equation*}
\left(\Omega_{L}\right)^{\mathrm{km}} / \quad \mathrm{dt} \neq 0 \tag{7.3}
\end{equation*}
$$

Hence Ω_{L} and $d t$ define a contact structure on $J^{2 k-1}(R, M)$ (see $|B L|)$. Thus, there exists a unique vector field ξ_{L} on $J^{2 k-1}(R, M)$ satisfying

$$
\begin{equation*}
{ }_{\xi_{L}} \Omega_{L}=0 \quad, \quad \operatorname{dt}\left(\xi_{L}\right)=1 \tag{7.4}
\end{equation*}
$$

Since $d t\left(\xi_{L}\right)=1$, then ξ_{L} is locally aiven by

$$
\begin{equation*}
\xi_{L}=\partial / \partial t+\sum_{i=1}^{2 k} X_{i}^{A} \cdot \partial / \partial q_{i-1}^{A}+\xi^{A} \partial / \partial q_{2 k}^{A} \tag{7.5}
\end{equation*}
$$

Because ${ }^{i_{\xi_{L}}}{ }^{\Omega}{ }_{L}=0$, we have

$$
\begin{aligned}
0 & =\Omega_{L}\left(\xi_{L}, \quad \partial / \partial \cdot q_{2 k}^{B}\right)=d \theta_{L}\left(\xi_{L^{\prime}}, \partial / \partial q_{2 k}^{B}\right) \\
& =-\left(\partial^{2} L / \partial q_{k}^{A} \partial q_{k}^{B}\right)\left(q_{2 k}^{A}-x_{2 k}^{A}\right)
\end{aligned}
$$

Then, the remularity of L implies that

$$
x_{2 k}^{A}=q_{2 k}^{A},
$$

Now, let us suppose that $X_{i}^{A}=q_{i}^{A}, 1 \leqslant i \leqslant s \leqslant 2 k-2$. Then we have

$$
\begin{aligned}
0 & ={ }_{{ }_{L}}\left(\xi_{L^{\prime}}, \partial / \partial q_{S-1}^{A}\right)=d \theta_{L}\left(\xi_{L}, \partial / \partial{\underset{S}{S-1}}_{A}^{A}\right) \\
& =-\left(\partial^{2} L / \partial q_{k}^{A} \partial q_{k}^{B}\right) \quad\left(q_{S-1}^{A}-x_{S-1}^{A}\right)
\end{aligned}
$$

Therefore, we also have $X_{s-1}^{A}=q_{s-1}^{A}$. Hence (7.5) becomes

$$
\xi_{L}=\partial / \partial t+\sum_{i=1}^{2 k} q_{i}^{A} \partial / \partial q_{i-1}^{A}+\xi^{A} \partial / \partial q_{k}^{A}
$$

or, equivalently, $2 k$

$$
\begin{equation*}
\xi_{L}=\partial / \partial t+\sum_{i=1}^{2 k} i y_{i}^{A} \partial / \partial y_{i-1}^{A}+\bar{\xi}^{A} \partial / \partial y_{k}^{A} \tag{7.6}
\end{equation*}
$$

Then, from (7.6), we deduce that ξ_{L} is a semispray on $J^{2 k-1}(R, M)$. Moreover, we have

$$
\begin{equation*}
\xi_{L}\left(p_{A}^{1}\right)-\partial L / \partial q^{A}=0 \tag{7.7}
\end{equation*}
$$

Now, taking into account (7.2), (7.7) becomes

Hence, if. s is a path of. ξ_{L}, then, from (7.8), we have

$$
\sum_{i=0}^{k}(-1)^{i} \frac{1}{i!} \frac{d^{i}}{d t^{i}}\left(\frac{\partial L}{\partial q_{i}^{A}}\right)=0
$$

alona the canonical proloncation $s^{2 k-1}$ of s to $J^{2 k-1}(R, M)$. Therefore, we have proved the following.
Proposition (7.1). Let $L: J^{k}(R, M) \longrightarrow R$ be a non-autonomous reqular Laqrangian of order k on M. Then the vector field ξ_{L} satisfying (7.4) is a semispray on $J^{2 k-1}(R, M)$ whose paths are the solutions of the generalized Lagrance equations (7.9).

We call ${ }_{5}$ the Laqrange vector field for L. Now, taking into account Proposition 5.1 and 6.1 , we have

Theorem (7.1). Let $L: J^{k}(R, M) \Longrightarrow R$ be a non-autonomous reqular Laqranqian of order k on M and let ξ_{L} be the Laqrange vector field for L. Then there exists a dynamical connection Γ_{L} on $J^{2 k-1}(R, M)$ whose paths are the solutions of the generalized Lagrange equations corresponding to L. This connection is qiven by

$$
\Gamma_{L}=\Gamma-\left(\tilde{\xi}-\xi_{L}\right) \otimes d t,
$$

where $\quad r=-\frac{1}{k} L_{\xi_{L}} \mathcal{F}_{1}+\frac{k-1}{k}\left(I-\xi_{L} d t\right)$, and $\tilde{\xi}$ is the associated semispray to Γ. (Here, \mathcal{F}_{1} is the canonical tensor field of type $(1,1)$ on $\left.J^{2 k-1}(R, M)\right)$.
Remark.- Obviously, if $k=1$, we have

$$
\Gamma_{L}=L_{\xi_{L}} \not{千} \quad(\text { see } \mid \text { DLR1 } \mid)
$$

References

|AA1| V. Aldaya \& J. de Azcárraga, Geometric formulation of Classical Mechanics and field theory, Rev. Nuovo Cimento, 3, (3), (10), (1980), 1-66.
|AA2| V. Aldaya \& J. dee Azcárraga, Higher order Hamiltonian formalism in field theory, J. Phys. A ' Math. Gen. 13, (1982), 2545-2551.
$|\mathrm{BL}|$ D. Blair, Contact manifolds in Riemannian geometry. L. N. M. \#509, Springer-Verlag, Berlin, 1976.
$|C B|$ R. Clark \& M. Bruckheimer, Sur les structures presque tangentes, C.R. Acad. Sc. Paris, 251, (1960), 627-629.
 the Helmholtz conditions in time-depending Lagrangian dynamics, J. Phys. A : Math. Gen., 17, (1984), 1437-1447.
|CSC| M. Crampin, M. Sarlet \& F. Cantrijn, Higher order differential equations and higher order Lagrangian mechanics, Math. Proc. Cambridge Phil. Soc., 99,3 (1986), 565-587.
|DLR1|M. de León \& P.R. Rodrigues, Geometric structures in non-autonomous Lagrangian dynamics, Preprint, (1986).
|DLR2|M. de León \& P.R. Rodrigues, Generalized Classical Mechanics and Field Theory, Notas de Matematica \# 112, North-Holland, 1985.
$|F K|$ M. Francaviglia \& D. Krupka, On the globalizations of Lagrangian and Hamiltonian formalisms in higher order mechanics, IUTAM-ISIUM, Symposium on Modern Developments in Analytical Mechanics, Turin, June, 7-11, (1982), Acad. Sc. of Turin, 117, (1983), 109-12.
|GM| P.L. García \& J. Muñoz, Higher order Analytical Dynamics, Procee dings of the VII ELAM, Univ. Simón Bolívar, Caracas, (1984), 19-48.
|G1| J. Grifone, Structure presque tangente et connexions $I, A n n$, Inst. Fourier, Grenoble, 22 (3), (1972), 287-334.
|G2| J. Grifone, Structure presque tangente et connexions II, Ann. Inst. Fourier, Grenoble, 22(4), (1972), 291-338.
|HK| M. Hórak \& I. Kolár, On the higher order Poincaré-Cartan forms, Czech. Math. J., 33,103, (1983), 467-475.
 formalism in fibred manifolds, Preprint (1984).
$|K R|$ D. Krupka, on the higher order Hamiltonian theory in fibred spaces, Geom. Methods in Physics, Proc. of the Conf. on Diff. Geom. and its

Applications, Czech., September, 5-9, (1985), 167-183.
$|L| \quad$ P. Libermann, On sprays and higher order connections, Proc. Nat. Acad. Sci. U.S.A., 49, (1963), 459-462.
$|S|$ W.F. Shadwick, The Hamiltonian formulation of regular rthorder Lagrangian field theories, L.N. Ph.\# 6, (1982), 409-416.
$|T 1|$ W. Tulczjew, Sur la différentielle de Lagrange, C.R.Acad. Sc. Paris, 280 A, (1975), 1295-1298.
|T2| W. Tulczyjew, The Lagrange complex, Bull. Soc. Math. France, 105, (1977), 419-431.
|Y1| K. Yano \& S. Ishihara, Tangent and Cotangent Bundles, Iarcel Dekker, New York, 1973.

MANUEL DE LEON
CECIME
CONSEJO SUPERIOR DE INVESTIGACIONES
CIENTIFICAS
SERRANO , 123
28006 MADRID
SPAIN

PAULO R. RODRIGUES
DEPARTAMENTO DE GEOMETRIA
INSTITUTO DE MATEIATICA UNIVERSIDADE FEDERAL FLUMINENSE
24.000 - NITEROI, RJ

BRAZIL

