WSGP 9

Jürgen Eichhorn
 Invariance properties of the Laplace operator

In: Jarolím Bureš and Vladimír Souček (eds.): Proceedings of the Winter School "Geometry and Physics". Circolo Matematico di Palermo, Palermo, 1990. Rendiconti del Circolo Matematico di Palermo, Serie II, Supplements No. 22. pp. [35]--47.

Persistent URL: http://dml.cz/dmlcz/701460

Terms of use:

© Circolo Matematico di Palermo, 1990

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

INVARIANCE PROPERTIES OF THE LAPLACE OPERATOR

Jürgen Eichhorn

1. Introduction

This paper arose from some work in gauge theory on noncompact manifolds. Let (M^{n}, g) be open complete, G a compact Lie group with Lie algebra of, $P(M, G)$ a G-principal fibre bundle, $g_{P}=P \times{ }_{A} g$, φ_{P} the set of $G-c o n n e c t i o n s$ and \mathcal{g}_{P} the gauge group. Assuming that there are already well defined Sobolev completions $\overline{\boldsymbol{y}}_{\mathrm{p}}^{\mathrm{k}}, \vec{e}_{\mathrm{P}}^{\mathrm{k}}$ (which is a rather delicate problem but solved by ourselves), there arises the question about the structure of the configuration space $\bar{e}{ }_{P}^{k} / \bar{\xi}_{\mathrm{P}}^{\mathrm{k}+1}$. One would like to obtain closed orbits as submanifolds of $e_{P}^{K_{P}}$ and a stratification of $\overline{e_{P}^{k}} / \bar{y}_{P}^{k+1}$ as in [3]. Consider the question of closed orbits as submanifolds of $\overline{\mathcal{C}}_{\mathrm{p}}^{\mathrm{k}}$. To do this, one has to consider how for $\omega \in \vec{\varphi}_{\mathbf{p}}^{\mathbf{k}}$ the differential of the map $\phi_{\omega}: \bar{\xi}_{P}^{k+1} \longrightarrow \bar{e}_{P}^{k}, f \longrightarrow f^{*} \omega$, acts. A necessary condition for the submanifold property of the orbits is the closedness of in $T_{e} \phi_{\omega}$. There holds $T_{e} \phi_{\omega} \eta=-\nabla^{\omega} \eta, \eta \in \Omega^{0}\left(g_{p}\right)(=0-$ forms with values in g_{p}). But on closed manifolds in ∇^{ω} is closed since $\nabla^{\boldsymbol{\omega}}$ has an injective symbol. On open manifolds this is far from being true. Nevertheless, also on open manifolds it can occur that mm $\nabla^{\boldsymbol{\omega}}$ is closed. $\overline{\mathcal{C}}_{P}^{k}$ splits into in general uncountable many components, each of them being an affine space. To establish a reasonable theory, one would ask if in ∇^{ω} is closed for all ω^{\prime} of a component $\operatorname{comp}(\omega)$ in \vec{e}_{p}^{k}. This leads to questions of spectral invariance for the Laplace operator $\Delta \omega$ with respect to the connection, as we point out below. In fact, we prove that the closedness of $\operatorname{im} \nabla \omega$ is a property of the whole component of ω in $\bar{\varphi}_{p}^{k}$. But we show more, namely the invariance of the essential spectrum which implies the result for in $\boldsymbol{\nabla}^{\boldsymbol{\omega}}$.

This paper is in final form and no version of it will be submitted for publication elsewhere.

This is the main result of the paper.
In §2 we recall some simple facts from Hilbert space theory. In
§3 we clarify the topology in the connection space. Finally, §4 is devoted to the main results 4.9-4.12, which are of selfconsistent interest for the spectral theory of open manifolds.

2. Hilbert space preliminaries

Let X be a Hilbert space; $A: D_{A} \longrightarrow X$ a self-adjoint nonnegative unbounded operator. Then the spectrum $\partial(A)$ splits into the purely discrete point spectrum $\zeta_{p d}(A)$ and the essential spectrum $\delta_{e}(A)$,

$$
\zeta(A)=\zeta_{p d}(A) \cup \zeta_{e}(A), \quad \zeta_{p d}(A) \cap \zeta_{e}(A)=\varnothing .
$$

The essential spectrum is characterized by the existence of Weyl sequences, i.e.

$$
G_{e}(A)=\{\lambda \in \zeta(A) \mid \text { where exists a Weyl sequence for } \lambda\}
$$

A Weyl sequence for λ is a bounded non-precompact sequence $\left(x_{i}\right)_{i}$ in D_{A} such that

$$
\lim _{i \rightarrow \infty} A x_{i}-\lambda x_{i}=0
$$

Without loss of generality one can assume that a Weyl sequence consists of orthonormal elements .
The Hilbert space X decomposes as an orthogonal direct sum

$$
X=\overrightarrow{i m A} \oplus \quad \operatorname{ker} A
$$

We would like to give a spectral theoretic description for the closedness of im A. For this we need another non-disjoint decomposition of the spectrum. Set

$$
\zeta_{p f}(A)=\{\lambda \in G(A) \mid \lambda \text { is an eigenvalue of finite multipli- }
$$ city $\}$.

Then $\sigma(A)=\sigma_{p f}(A) \cup \quad \zeta_{e}(A)$ and $\zeta_{p f}(A) \cap \zeta_{e}(A)=\operatorname{set}$ of all eigenvalues of finite multiplicity that are embedded into the essential spectrum. We reall a simple fact from [5] , p. 223. Proposition 2.1. Let A be self-adjoint, $\lambda \in \mathbb{C}$. Then the following cases are possible.
a. $\operatorname{im}(A-\lambda E)=X$. Then λ belongs to the resolvent set.
b. im (A- AE) is a proper subspaces of $\overline{\operatorname{im}(A-\lambda E)}$, $\overline{\operatorname{im}(A-\lambda E)}=$ $=X$. Then $\lambda \in \zeta_{e}(A), \lambda \notin \zeta_{p I}(A)$.
c. $\operatorname{im}(A-\lambda E)=i m(A-\lambda E)$, $\overline{i m}(A-\lambda E)$ is a proper subspace of finite codimension. Then $\lambda \in \zeta_{p f}(A), \lambda \notin \zeta_{e}(A)$.
d. im ($A-\lambda E$) is a proper subspace of $\overline{i m(A-\lambda E)}$ and $\overline{i m(A-\lambda E)}$ is a proper subspace of X of finite codimension. Then $\lambda \in \zeta_{p p}(A) \cap \zeta_{p}(A)$.
e. codim $\frac{\operatorname{im}(A-\lambda E)}{}=\infty$. Then $\lambda \in \zeta_{e}(A), \lambda \notin \zeta_{p f}(A)$. Corollary 2.2. im A is closed if and only if $\left.0 母 \int_{e}^{(A} \mid(\text { kerA })^{\perp}\right)$. Proof. We denote $A \mid(\text { kerA })^{\perp}$ by A^{\prime}. Since im $A=i m A^{\prime}$ the proof reduces to A^{\prime} and to the Hilbert space $X^{\prime}=\overline{i m A}$. We apply 2.1 to $X^{\prime}, A^{\prime}, \lambda=0$. If im A^{\prime} is closed then we have to apply 2.1.a. and 0 belongs to the resolvent set, in particular $0 \notin \mathcal{U}_{e}\left(A^{\prime}\right)$. If $0 \notin \mathcal{U}_{e}\left(A^{\prime}\right)$, then only the cases 2.1.a. and c. are possible, in fact only the case a., i.e. in particular im A^{\prime} is closed. \quad -
Corollary 2.3. If inf $\sigma_{e}(A)>0$, then im A is closed. \square

3. The topology of the connection space

We assume that of is endowed with a G-invariant positive definite scalar product (). This is in particular in canonical manner possible if G is semisimple. () on oy induces a fibrewise scalar product (, $)_{x}$ in g_{p} and a global scalar product

$$
\langle s, t\rangle=\int_{M}(s, t)_{x}{ }^{d v o l_{x}}, s, t \in c_{0}^{\infty}\left(g_{P}\right) \equiv \Omega_{0}^{0}\left(g_{P}\right)
$$

More general, let $\Omega^{0}\left(T_{r}^{q} \otimes g_{p}\right)$ resp. $\Omega^{q}\left(g_{P}\right)$ be the space of smooth tensor fields resp. q-forms with values in o_{p}. Then the pointwise norm $|\alpha \otimes s|_{x}=|\alpha|_{x} \cdot|s|_{x}$ for $\alpha \in \Omega^{0}\left(T_{r}^{q}\right)$ resp. $\alpha \in \Omega^{q}$ is well-defined, can be extended to $\varphi \in \Omega^{r^{0}}\left(T_{r}^{q} \otimes g_{p}\right)$ resp. $\varphi \in \Omega^{q}\left(g_{p}\right)$ and defines a global scalar product

$$
\left\langle\varphi_{1} \psi\right\rangle=\int\left(\varphi_{1} \psi\right)_{x} d \text { vol }
$$

φ, ψ with compact support. If $\omega \in \zeta_{p}$ then ω induces a unique metric connection $\nabla^{\omega}: \Omega^{0}\left(g_{p}\right) \longrightarrow \Omega^{1}\left(g_{p}\right)$, which extends by tensoring with the Levi-Civita connection $g \nabla$ of M to connections in all tensor bundles $\mathrm{T}_{\mathrm{r}}^{\mathrm{q}} \otimes g_{\mathrm{P}}$ and in $\Lambda^{q_{T}{ }^{*}} \mathrm{M} \otimes \mathcal{O}_{\mathrm{P}}$. Let $S=S(\omega)$ be a finite set of polynomials in $\nabla^{\boldsymbol{\omega}},\left(\nabla^{\omega}\right)^{*}$ with constant coefficients. Then we set
for $1 \leqslant p<\infty$
${ }^{p} \Omega_{S}^{q}\left(g_{p}, \omega\right)=\left\{\varphi \in \Omega^{q}\left(g_{p}\right) \mid p\|\varphi\|<\infty, \quad{ }^{p}\|D \varphi\|<\infty\right.$ for all $\left.D \in S\right\}$
and $\left.p \bar{\Omega}^{q}, S_{(} g_{p}, \omega\right)=$ completion of ${ }^{p} \Omega{ }_{S}^{q}\left(g_{p}, \omega\right)$ with respect to

$$
p\|\varphi\|_{S}:=p\|\varphi\|+\sum_{D \in S} p\|D \varphi\| .
$$

Here as usual $\quad \mathrm{p}\|\rho\|=\left(\int|\varphi|_{\mathrm{x}}^{\mathrm{p}} \mathrm{dvol}_{\mathrm{x}}\right)^{1 / p}$.
Cases of particular interest are
$p \bar{\Omega}, k, l\left(g_{p}, \omega\right)=p \bar{\Omega} q,\left\{\nabla^{0}, \ldots, \nabla^{k}, \nabla^{*}, \ldots,\left(\nabla^{*}\right)^{l}\right\}\left(g_{p}, \omega\right)$,
${ }^{p} \bar{\Omega}^{q, k}\left(g_{p}, \omega\right) \equiv{ }^{p} \bar{\Omega}^{q, k, 0}\left(g_{p}, \omega\right)$.
In the same manner one defines $p \bar{\Omega}^{0, S}\left(T_{r}^{q} \otimes g_{p}, \omega\right)$.
For $\varphi \in \Omega^{q}\left(g_{p}\right)$ we set

$$
\begin{aligned}
& { }^{b}|\varphi|_{S}:=\sup _{x \in M}\left(\left\{|\varphi|_{X}\right\} \cup\left\{|D \varphi|_{x} \mid D \in S\right\}\right. \\
& { }^{b} \Omega_{S}^{q}\left(g_{P}, \omega\right)=\left\{\left.\varphi \in \Omega^{q}\left(g_{P}\right)|b| \varphi\right|_{S}<\infty\right\}
\end{aligned}
$$

and ${ }^{b} \bar{\Omega}^{q, S}\left(g_{p}, \omega\right)=$ completion of ${ }^{b} \Omega_{S}^{q}\left(g_{p}, \omega\right)$ with respect to ${ }^{\mathrm{b}}| |_{S}$. Analogously one defines $\left.{ }^{\mathrm{b}} \bar{\Omega}^{0, S_{(~}^{T}} \mathrm{~T}_{\mathrm{P}} \otimes g_{P}, \omega\right)$. Finally we set

$$
\begin{gathered}
{ }^{b, p_{U}} \underset{\varepsilon, S}{ }(\omega)=\left\{\omega \cdot \in \varphi_{P} \mid \omega^{\prime}-\omega \in^{b} \Omega_{S}^{l}\left(g_{p}, \omega\right) \cap{ }^{p} \Omega_{S}^{l}\left(g_{P}, \omega\right)\right. \text { and } \\
\left.p, b\left\|\omega^{\prime}-\omega\right\|_{S(\omega)}:={ }^{b}\left|\omega{ }^{\prime}-\omega\right|_{S}+{ }^{p}\left\|\omega^{\prime}-\omega\right\|_{S}<\varepsilon\right\}
\end{gathered}
$$

For $S(\omega)=\left\{\nabla^{0}, \ldots, \nabla^{k}, \nabla^{*}, \ldots,\left(\nabla^{*}\right)^{m}\right\}_{\text {we set }} p, b\| \|_{S(\omega)}=$

Proposition 3.1. The ${ }^{\varepsilon, S_{p}, b_{U}} \varepsilon, k, m(\omega), \varepsilon^{k} \gg 0, \omega \in \mathcal{C}_{p}$, form a bass of neighbourhood filters for a locally metrizable topology on \boldsymbol{C}_{p} Proof. For moO the (rather delicate) proof is that of proposition 7.3 of [1] . Form > 0 it follows using equation (5.3) of [1].0 Taking completions, we obtain spaces $p, b \mathcal{Q}_{P}^{k, m}$. By comp(ω) we denote the component of $\omega \in \mathcal{E}_{P}$ in $p, b \bar{e}_{P}^{k, m}$.
Proposition 3.2. $p, b \overline{\mathcal{C}}_{\mathrm{p}, \mathrm{m}}^{\mathrm{P}}$ is a locally affine space, where comp (ω) is affine with $\left.p, b \bar{\Omega}^{l, k, m_{(}} g_{p}, \omega\right)$ as vector space. For the proof we refer to that of 7.5 of [1] . a If $m=0$, we write simply $p, b \bar{\varphi}_{P}^{k}$ and $p, b_{U}, \varepsilon_{k}$.

4. The invariance of the essential spectrum

Consider $\omega \in \varphi_{p}, \omega^{\prime} \in \operatorname{comp}(\omega)_{c}{ }^{p, b} \bar{\varphi}_{p}^{k}$. Then $\omega^{\prime}=\omega+\eta$ and η is only $\in C^{k}$, i.e. $\nabla \omega^{\prime}$ has non-smooth coefficients. But since the coefficients are $\in \mathrm{C}^{\mathrm{k}}$ the iteration $\left(\nabla^{\boldsymbol{\omega}}\right)^{\mathbf{i}}, 0 \leq_{i} \leqslant_{k+1}$, is still well-defined and the same holds for the Sobolev spaces ${ }^{p} \bar{\Omega}^{q, s}\left(g_{p}, \omega\right), 0 \leq s \leq k+1$. We wish to compare ${ }^{p} \bar{\Omega}^{q, s}\left(g_{p}, \omega\right)$ and $p \bar{\Omega}^{q, s}\left(g_{p}, w^{\prime}\right)$. For this we recall some simple equations between ∇^{ω} and $\nabla^{\boldsymbol{\omega}}$. According to §4 of [1]

$$
\begin{gather*}
\left(\nabla^{\omega}-\nabla^{\omega}\right) \varphi=[\omega '-\omega, \varphi], \tag{4.1}\\
\nabla[\varphi, \psi]=[\nabla \varphi, \psi]+[\psi, \nabla \varphi], \tag{4.2}
\end{gather*}
$$

where $\left.\left[\omega^{\prime}-\omega_{j}\right]\right](s)=\left(\omega^{\prime}-\omega\right)(\varphi(s))-\varphi\left(\left(\omega^{\prime}-\omega\right)(s)\right)$ and denotes the validity of the equation up to a permutation in ${ }_{\text {the }}$ tensor products.
Then (4.1), (4.2), $|s \otimes t|_{x}=|t| \frac{1}{\mid}|s|_{x}$ imply for the pointwise norm

$$
\begin{equation*}
\left|\left(\nabla^{\omega^{\prime}}-\nabla^{\omega}\right) \varphi\right|=\left|\left[\omega^{\prime}-\omega, \varphi\right]\right| \leq c \cdot\left|\omega^{\prime}-\omega\right| \cdot|\varphi| \tag{4.3}
\end{equation*}
$$

$|\nabla[\xi, \zeta]| \leqslant|[\nabla \xi, \zeta]|+|[\xi, \nabla 5]| \leqslant$

$$
\begin{equation*}
\leq c \cdot(|\nabla \xi| \cdot|\zeta|+|\xi| \cdot|\nabla \zeta|) . \tag{4.4}
\end{equation*}
$$

By means of (4.1) - (4.4) we proved in [1]
Proposition 4.1. Assume $\omega \in \mathcal{C}_{p}, \omega^{\prime} \in \operatorname{comp}(\omega) c^{p, b} \overline{\mathcal{C}}_{p}^{k}$. Then

$$
\begin{equation*}
\mathrm{p} \bar{\Omega}^{q, s}\left(g_{p}, \omega\right)={ }^{p} \bar{\Omega}^{q, s}\left(g_{p}, \omega^{\prime}\right) \tag{4.5.}
\end{equation*}
$$

as equivalent Banach spaces, $0 \leq s \leq k+1$. a
We now specialize to $\mathrm{p}=2$.
On compact manifolds and for a differential operator A of order r with smooth coefficients and injective symbol there holds

$$
\begin{equation*}
{ }^{2} \Omega^{s}=\left.\operatorname{imA}\right|_{S+r} \oplus \operatorname{ker} A \quad\left(\left.A\right|_{S+r}=\left.A\right|_{2} \Omega^{s+r}\right) \tag{4.6}
\end{equation*}
$$

as orthogonal direct sum of closed subspaces.
On open manifolds one has to replace the image by its closure in the corresponding space. If one is working with non-smooth coefficients there arise additional troubles. But in our case
$A=\nabla^{\omega}+\eta, \omega$ smooth and $\eta \epsilon^{2, b} \bar{\Omega}^{l, k}\left(g_{p}, \omega\right)$ this troubles can be overcome (cf. [4.] and [3], p.34-36), and we conclude to Proposition 4.2. For $\omega \in \zeta_{p}, \omega^{\prime} \in \operatorname{comp}(\omega) \in^{2, b} \bar{\tau}^{k}$

$$
\begin{aligned}
& { }^{2} \bar{\Omega}^{1, s}\left(g_{p}, \omega\right)={ }^{2} \bar{\Omega}^{l, s}\left(g_{p}, \omega^{\prime}\right)=\overline{\left.\operatorname{im} \nabla^{\omega}\right|_{s+1}} \oplus \operatorname{ker}\left(\nabla^{\omega}\right)^{*}= \\
& =\overline{\left.\operatorname{im}\left(\nabla^{\omega}+\eta\right)\right|_{s+1} \oplus \operatorname{ker}\left(\nabla^{\omega}+\eta\right)^{*}, s \leq k . \quad \square}
\end{aligned}
$$

At this stage we do not need the assumption $k>n / 2$, since by our assumption $\eta \epsilon^{2, b} \bar{\Omega}^{l}, k\left(g_{p}, \omega\right) \eta$ is automatically $\in c^{k}$ and bounded.
To relate the closedness of in $\nabla \boldsymbol{\omega}$ with spectral theory, we must still introduce the Sobolev spaces associated to the powers of $\Delta^{\boldsymbol{\omega}}$ and relate them to the spaces ${ }^{2} \bar{\Omega}^{q, k}\left(g_{p}, w\right)$. We define
and

$$
\begin{aligned}
& \left.{ }^{2} \Omega_{i m}^{\prime}\left(g_{p}, \omega\right)={ }^{2} \Omega_{\left\{\Delta^{q}\right.}^{q}, \ldots, \Delta^{m}\right\}\left(g_{p}, \omega\right)= \\
& =\left\{\varphi \in \Omega^{q}\left(g_{p}\right) \mid{ }^{2}\|\varphi\|_{2 m}:=\sum_{i=0}^{m}{ }^{2}\left\|\Delta^{i} \varphi\right\|<\infty\right\}
\end{aligned}
$$

${ }^{2} \bar{\Omega}, q, 2 m\left(g_{p}, \omega\right)=$ completion of ${ }^{2} \Omega_{2}^{\prime}\left(g_{p}, \omega\right)$ with respect

We consider the following two conditions ($B_{k}(M)$) for the metric g and ($B_{k}\left(g_{P}\right)$) for the connection ω.
($B_{k}(M)$). The curvature of M is bounded up to order k, i.e. there exist constants C_{i} such that

$$
\left|\left({ }^{g} \nabla\right)^{i} R^{M}\right| \leq c_{i}, \quad 0 \leq i \leq k
$$

$\left(B_{k}\left(g_{p}\right)\right)$. The curvature of g_{p} is bounded up to order k, i.e. there exist constants D_{i}, such that

$$
\left|\left(\nabla^{\omega}\right)^{i_{R}} \boldsymbol{w}\right| \leqslant D_{i}, \quad 0 \leq i \leq k,
$$

where R^{M} resp. $R^{\boldsymbol{\omega}}$ denotes the curvature (M^{n}, g) resp. of (g_{p}, ∇^{ω}). From [2] we use
Proposition 4.3. if $\left(M^{n}, g\right)$ and ($\left.g_{p}, \omega\right)$ satisfy the conditions $\left(B_{2 m}(M)\right)$ and $\left(B_{2 m}\left(g_{p}\right)\right)$ then

$$
{ }^{2} \bar{\Omega}^{q, 2 m+2}\left(g_{p}, \omega\right)={ }^{2} \vec{\Omega} \cdot q, 2 m+2\left(g_{p}, \omega\right)
$$

Denote by $\Theta_{P, b, r} c \bigodot_{P}$ the subset of all connections satisfying ($B_{r}\left(g_{P}\right)$) and $p, b \overline{\mathcal{e}}_{P, b, r}^{k} c \quad p, b \bar{\varphi}_{P}^{k}$ the corresponding compleion.
Proposition 4.4. If (M^{n}, g) satisfies ($\left.B_{F}(M)\right), \omega \in \zeta_{P, b, r}$ and $r \leq k$, then $\operatorname{comp}(\omega) c p, b \bar{\varphi}_{P}^{k}$ belongs to $\bar{\phi}, b \bar{e}_{P_{p} b, F}^{k}$ i.e. with
 In particular, $p, b \bar{e}_{P, b, r}^{k}$ is open in $p, b \bar{e}_{P}^{k}$.
Proof. According to 3.2 there remains to show that $\omega \in \varphi_{p, b, r}$ and $\eta \in^{p, b} \bar{\Omega}^{1, k}\left(g_{p}, \omega\right)$ implies

$$
\begin{equation*}
\left|\left(\nabla^{\omega+\eta}\right)^{i_{R} \omega+\eta}\right| \leqslant c_{i}, \quad 0 \leqslant i \leqslant r . \tag{4.7}
\end{equation*}
$$

This follows immediately from

$$
R^{\omega+\eta}=R^{\omega}+d^{\omega} \eta+\frac{1}{2}[\eta, \eta]
$$

iterated covariant differentiation, the assumption $\eta \in^{b} \Omega^{I, k}\left(o_{P}, \omega\right)$ and $\left(B_{r-1}(M)\right)$. We remark that $\nabla^{\omega}{ }_{\eta}$ bounded implies $d^{\omega} \eta$ bounded. The assumption $\left(B_{r}(M)\right)$ is needed since in $\left(\nabla^{\boldsymbol{\omega}}+\boldsymbol{\eta}\right)^{i}$ appear the (i-l)-th pe trial derivatives of the Christof: eel symbols which are bounded since we have ($\left.B_{r}(M)\right)$, which. emplies in normal coordinates the boundedness of all partial derivelives of the $\Gamma_{i j}^{k}$ of order $\leq r-1 . \square$
Corollary 4.5. If M satisfies ($B_{2 m}(M)$), $\omega \in \ddot{e}_{P, b, c m}$ and $\omega^{\prime} \in \operatorname{comp}(\omega)$ then there holds for $s \leqslant m$
$\frac{\text { Proof. }}{2} \bar{\Omega}^{0,2 s}$ This equation holds for the spaces ${ }^{2} \bar{\Omega}^{0,2 s}$ (of p, ω). For $\overline{2}^{0,2}{ }^{0,}\left(g_{p}, \omega^{\prime \prime}\right)$ it follows from 4.3,4.4. 口
Lemma 4.6. Under the assumption $\left.4.5 \mathrm{im}\left(\nabla^{\boldsymbol{\omega}}\right)^{*}\right|_{2 s+1}$ is closed if and only if in $\left.\Delta^{\omega \prime}\right|_{2(s+1)}$ is closed.
 in $\left(\nabla \omega^{\prime}\right)^{*} L_{2 s+1}$ is orthogonal to $\left.\operatorname{ker} \nabla^{\omega^{\prime}}\right|_{2 s+1}$ with respect to the L_{2}-scalar product, and er $\Delta^{\boldsymbol{\omega}}=\operatorname{ker} \nabla^{\prime} \boldsymbol{\omega}^{\prime}$. Since by 4.5
 and $\left.\operatorname{im}\left(\nabla^{\omega^{\prime}}\right)^{\prime}\right|_{2 s+1}$ orthogonal to jer $\left(\Delta^{\omega^{\prime}}\right)^{\prime \prime}$, we obtain

$$
\left.\operatorname{im}\left(\nabla^{\omega^{\prime}}\right)^{*}\right|_{2 s+1} \subseteq \overline{\left.\operatorname{im} \Delta^{\omega^{\prime}}\right|_{2(s+1)}}
$$

Thus we obtain

$$
\left.\left.\left.\operatorname{im} \Delta^{\omega^{\prime}}\right|_{2(s+1)} \subseteq i m\left(\nabla \omega^{\prime}\right)^{*}\right|_{2 s+1} \subseteq \overline{i m} \Delta^{\omega^{\prime}}\right|_{2(s+1)} \cdot \text { (4.9) }
$$

From these inclusions we conclude that the closedness of in $\Delta^{\boldsymbol{\omega}} \mathbf{l}_{2(s+1)}$ implies the closeness of $\operatorname{im}\left(\nabla^{\boldsymbol{\omega}}\right)^{*} l_{s+1}$. There remains to prove the inverse implication. Assume em $\left(\nabla^{\omega}\right)^{*} \|_{2 s+1}$ being closed and $\operatorname{im} \Delta^{w} \mid \gamma_{(s+1)}$. not. According to (4.9), then there
 $\varphi=\left(\nabla^{\boldsymbol{\omega}}\right)^{*} \psi$. We can assume $\psi \in \operatorname{im} \nabla^{\boldsymbol{\omega}} h(s+1)$. Namely, if
 then $0=\left\langle\psi_{2}, \nabla^{\omega t} \chi\right\rangle{ }^{\prime}$ for all $\chi \in^{2} \bar{\Omega}^{0,2(s+1)}\left(g_{p}, \omega^{\prime}\right)$, ie. $\left(\nabla^{\omega}\right)^{\boldsymbol{*}} \boldsymbol{\psi}_{2}=0$. But $\operatorname{im}\left(\nabla^{\omega r}\right)^{*} \|_{2 s+1}$ closed is equivalent to
 $\chi \in^{2} \bar{\Omega} 0,2(s+1)\left(g_{p}, \omega^{\prime}\right)$, which implies $\left.\varphi^{\prime}=\left(\nabla^{\prime}\right)^{\prime}\right)^{\prime} \psi$ $=\left(\nabla^{\omega}\right)^{*} \nabla^{\omega^{\prime}} \chi=\Delta^{\omega^{\prime}} \chi$, ie. a contradiction. in $\Delta^{\omega^{\prime}} l_{2(s+1)}$ has to be closed.口.

Proposition 4.7. Under the assumptions of 4.5 the following assurions a. and b. are equivalent.
a. in $\Delta^{w} I_{2}$ is closed.
b. in $\left.\Delta^{\boldsymbol{w}}\right|_{1}$ is closed, $i=2,4, \ldots, 2(s+1)$.

Proof. Clearly, b. implies a.. Assume in $\left.\Delta^{\omega^{\prime}}\right|_{2}$ being closed and $\left.\bigcup^{\varphi} \in i m \quad \Delta^{\omega^{1}}\right|_{2 j}, j \leqslant s+1$. Then there exists a sequence
$\psi_{\nu} \in^{2} \Omega^{0,2 j}\left(g_{p}, \omega^{\prime}\right), \quad \psi_{\nu} \in\left(\mathrm{ker} \Delta^{\omega^{\prime}}\right)^{\perp}$ such that $\Delta \psi_{v} \rightarrow \varphi$ in ${ }^{2} \Omega^{0,2(j-1)}\left(g_{p}, \omega^{\prime}\right)$. Since $\frac{\operatorname{im} \Delta^{\omega^{\prime}} I_{2 j}}{} \subseteq i m \Delta^{\omega^{\prime}} I_{2}=i m \Delta^{\omega^{\prime}} I_{2}$ and Δ^{ω} is one to one outside jer $\Delta^{\omega j}$ there exists a unique

$\Delta \psi_{\nu} \longrightarrow \Delta \omega^{\Psi} \quad$ in ${ }^{2} \bar{\Omega}^{0,2(j-1)}, \quad \Delta \psi \epsilon^{2} \bar{\Omega}^{0,2(j-1)}\left(o_{p}, \omega^{\prime}\right)$
i.e. $\left.\varphi \in i m \Delta^{\omega^{\top}}\right|_{2 j} \cdot a$

Corollary 4.8. Under the hypothesises 4.5 the following assertions are equivalent.
a. in $\Delta^{\omega^{1}} I_{2} \equiv i m \overline{\Delta^{W}}$ is closed.
b. in $\left.\Delta^{\omega \prime}\right|_{i}$ is closed, $i=2,4, \ldots, 2(s+1)$.
c. in $\left(\nabla \omega^{i}\right)^{j^{k}} l_{i}$ is closed, $i=1,3, \ldots, 2 s+1$.
d. in $\nabla^{\omega \prime} l_{i}$ is closed, $i=1,3, \ldots, 2 s+1$.
e. in $T_{e} \phi_{\omega}$ is closed in ${ }^{2} \bar{\Omega}^{1, i}\left(o_{p}, \omega^{\prime}\right), i=1,3, \ldots, 2 s+1$. n

According to 2.2 in $\overline{\Delta^{\boldsymbol{\omega}}}$ is closed if and only if
$0 \notin \zeta_{e}\left(\left.\Delta^{\omega^{\prime}} \cdot\right|_{\left.\left(\operatorname{ker} \Delta^{\omega^{\prime}}\right)^{\boldsymbol{1}}\right) \text {. }}\right.$
Now we put the main question of our paper. Suppose ($\left.B_{2 m}(M)\right)$, $\omega \in \varphi_{P, b, 2 m}$ and $\operatorname{im} \nabla^{\omega} c^{2} \bar{\Omega}^{1,2 m+1}\left(g_{P}, \omega\right)$ being closed. Does the same hold for all $\omega^{\prime} \in \operatorname{comp}(\omega) \quad{ }_{2}, b \overline{\mathcal{l}}_{\mathrm{P}, \mathrm{b}, 2 \mathrm{~m}}^{\mathrm{k}}, 2 \mathrm{~m} \leqslant \mathrm{k}$?
Equivalent question. Suppose (M^{n}, g) and ω as above and
$0 \notin \mathrm{Ge}_{\mathrm{e}}\left(\overline{\Delta^{\bar{\omega}}} \mid\left(\operatorname{ker} \overline{\Delta^{\omega}}\right)^{\perp}\right)$. Does the same hold for all $\omega^{\prime} \in \operatorname{comp}(\omega)$? The affirmative answer follows from the following more general result.
 $c^{2, b} \overline{\mathcal{C}}_{P, b, 0}^{2}$. Then $\delta_{e}\left(\overline{\Delta^{w}}\right)=\zeta_{e}^{\left(\frac{\Delta^{w}}{}\right)}$, where the closure of Δ is taken in ${ }^{2} \bar{\Omega}^{0}\left(g_{p}\right)$.
Proof. We write $\Delta^{\omega}=\Delta, \Delta^{\omega^{\prime}}=\Delta^{\prime}$. $\omega^{\prime} \in$ comp (ω) implies

$$
\begin{equation*}
\Delta=\nabla^{\prime *} \nabla \quad=\left[\omega^{\prime}-\omega, \quad\right]^{*} \circ\left[\omega^{\prime}-\omega_{1}\right]+\left[\omega^{\prime}-\omega_{1}\right] \circ \nabla+ \tag{4.10}
\end{equation*}
$$

$+\nabla_{0}^{*}\left[\omega^{\prime}-\omega,\right]+\nabla^{*} \nabla=\nabla^{*} \nabla \quad+\mathcal{K} \quad$, i.e. for $\varphi \in^{2} \Omega_{\{\Delta\}}^{0}\left(o_{p}, \omega\right)$

$$
\begin{aligned}
\Delta \cdot \varphi= & \nabla^{\prime *} \nabla \cdot \varphi=\left[\omega^{\prime}-\omega,[\omega \cdot-\omega, \varphi]_{\mathrm{c}}+\left[\omega^{\prime}-\omega, \nabla \varphi\right]_{\mathrm{c}}+\right. \\
& +\nabla^{*}([\omega .11)
\end{aligned}
$$

where $\left[\omega^{\prime}-\omega, \Psi\right]_{c}$ means $\left[\omega^{\prime}-\omega, \Psi\right]$ as usual followed by contraction with the 1 -form $\omega^{\prime}-\omega$. On complete manifolds there holds ${ }^{2} \Omega_{\{\Delta\}}^{0}\left(g_{p}, w\right) \leq{ }^{2} \Omega_{\{\nabla\}}^{0}\left(g_{p}, \omega\right)$. There are constants C_{1}, C_{2}^{\prime} such that for the pointwise norm

$$
\begin{align*}
& {\left[\omega^{\prime}-\omega,\left[\omega^{\prime}-\omega, \varphi\right]\right]_{c} \leq c_{1} \cdot\left|\omega^{\prime}-\omega\right|^{2} \cdot|\varphi|,} \tag{4.12}\\
& \left|\left[\omega^{\prime}-\omega, \nabla \varphi\right]_{c}\right| \leq c_{2}^{\prime} \cdot|\omega '-\omega| \cdot|\nabla \varphi| \tag{4.13}
\end{align*}
$$

The estimation of $\nabla^{*}\left[\omega^{\prime}-\omega, \varphi\right]$ amounts to the estimation of the $\mathrm{g}^{\mathrm{kl}}, \nabla\left(\omega^{\prime}-\omega\right), \omega{ }^{\prime}-\omega, \nabla \boldsymbol{\omega}$. Since we assumed $\left(B_{0}(M)\right)$ the $g^{k l}$ in normal coordinates are bounded and there exists a constant C_{3}^{\prime} such that

$$
\left|\nabla^{*}[\omega \cdot-\omega, y]\right| \leq c_{3}^{\prime}(|\nabla(\omega \cdot 1-\omega)| \cdot|\varphi|+|\omega \cdot-\omega| \cdot|\nabla \rho|)(4.14)
$$

where we used a version of (5.3) of [1]). Furthermore, there exists a constant C_{4}^{\prime} such that

$$
\begin{equation*}
\left|\omega^{\prime}-\omega\right|,\left|\nabla\left(\omega^{\prime}-\omega\right)\right| \leq C_{4}^{\prime} \tag{4.15}
\end{equation*}
$$

(4.12) - (4.14) are used now to estimate $\mathfrak{Y K} \boldsymbol{\varphi}$. Let be $\lambda \in \zeta_{e}\left(\Delta^{\omega}\right)$. We have to show $\lambda \in \zeta_{e}\left(\Delta \omega^{\prime}\right)$ and proceed as follows. If $\left(u_{i}\right)_{i}$ is a Weyl sequence for λ, then we construct
starting from $\left(u_{i}\right)_{i}$ a Weyl sequence $\left(\varphi_{\nu}\right)_{\nu}$ such that

$$
\left\|\Delta^{\omega^{\prime}} \rho_{\nu}-\lambda \rho_{\nu}\right\| \underset{v \longrightarrow \infty}{\longrightarrow} 0
$$

There exists a compact submanifold $\mathrm{K}_{1}^{\mathrm{n}}$ such that

$$
\left\|\omega^{\prime}-\omega\right\|_{M, K_{1}}, \quad\left\|\left(\omega^{\prime}-\omega\right)\right\|_{M, ~} K_{1}<1 / 4^{l},
$$

where $\|\psi\|_{M, ~}=\left({ }_{M}\left\{\left._{K_{j}}|\psi|\right|^{2} d v o l\right)^{1 / 2}\right.$. Let $\left(u_{i}\right)_{i}$ be an orthonormail Weyl sequence for $\lambda \epsilon^{1} \zeta_{e}(\Delta \omega)$,

$$
\left\|\Delta^{\omega} u_{i}-\lambda u_{i}\right\| \underset{i \longrightarrow \infty}{\longrightarrow} 0
$$

$K_{1} \subset U_{1} \subset U_{1}, \bar{U}_{1}$ compact, $\phi=\phi_{1} \in C_{0}^{\infty}\left(U_{1}\right)$ such that $\phi=1$ on Vi. Then $\left(\phi u_{i}\right) \epsilon^{2} \bar{\Omega}^{0,2}\left(\left.g_{p}\right|_{U_{i}}, \omega\right)$ and by the Rellich lemma $\left(\phi u_{i}\right)_{i}$ contains a convergent subsequence in ${ }^{2} \bar{\Omega}^{0,1}\left(\left.g_{p}\right|_{U_{i}}, \omega\right)$ which we again denote by $\left(\Phi u_{i}\right)_{i}$. Now we consider $v_{i}=u_{2 i+1}-u_{2 i}$. Then $\left((1-\phi) v_{i}\right)_{i}$ is a Weal sequence: $\left((1-\phi) v_{i}\right)_{i}$ is bounded, nonprecompact and
$\Delta(1-\phi) v_{i}-\lambda(1-\phi) v_{i}=\Delta v_{i}-\lambda v_{i}-\Delta\left(\phi v_{i}\right)-\lambda\left(\phi v_{i}\right) \underset{i \rightarrow \infty}{\longrightarrow} 0$
since $\Delta v_{i}-\lambda v_{i} \rightarrow 0$ by assumption and $\Delta\left(\phi v_{i}\right)-\lambda\left(\phi v_{i}\right) \longrightarrow 0$ by construction of the subsequence $\left(\left(\Delta\left(\Phi u_{2 i+1}\right)_{i}, \Delta\left(\phi u_{2 i}\right)_{i}\right.\right.$ have the same limit, $\left(\phi u_{2 i+1}\right)_{i},\left(\phi u_{2 i}\right)_{i}$ have the same limit). $\Delta v_{i}-\lambda v_{i} \rightarrow 0$ implies $\left\|\nabla v_{i}\right\| \longrightarrow \sqrt{2 \lambda}$ since by completeness of $\left(\mathrm{m}^{\mathrm{n}}, \mathrm{g}\right)\left\langle\Delta \mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}\right\rangle-\lambda\left\langle\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}\right\rangle=\left\|\nabla \mathrm{v}_{\mathrm{i}}\right\|^{2}-\lambda\left\|\mathrm{v}_{\mathrm{i}}\right\|^{2}=\left\|\nabla \mathrm{v}_{\mathrm{i}}\right\|^{2}-2 \lambda \rightarrow 0$. Moreover, we get from $\mathbb{a}_{v_{i}}\|=\sqrt{2},\| \phi v_{i}\|,\| \nabla\left(\phi v_{i}\right) \| \longrightarrow 0$, that for all sufficiently high indices

$$
\begin{align*}
& \frac{\left\|\nabla(1-\phi) v_{i}\right\|}{\left\|(1-\phi) v_{i}\right\|} \leq \frac{\left\|\nabla v_{i}\right\|}{\left\|(1-\phi) v_{i}\right\|}+\frac{\left\|\nabla\left(\phi v_{i}\right)\right\|}{\|(1-\phi) v_{i}} \leq \frac{(\sqrt{2}+1 / 20) \sqrt{\lambda}}{\|(1-\phi) v_{i}} \\
& \quad+\frac{\left\|\left(\phi v_{i}\right)\right\|}{\left\|(1-\phi) v_{i}\right\|} \leq \sqrt{\lambda}(\sqrt{2}+1 / 20)+\sqrt{\lambda} / 20=(\sqrt{2}+1 / 10) \sqrt{\lambda} \tag{4.16}
\end{align*}
$$

if $\lambda>0$ and the left hand side of (4.16) $\leq 1 / 10$ if $\lambda=0$.
We start with the first index such that for all higher indices (4.16) is valid and denote $\left(u_{i}^{(1)}\right)_{i}=\left((1-\phi) v_{i} /\left\|(1-\phi) v_{i}\right\|\right)_{i}$, in particular $\left\|u_{i}^{(1)}\right\|=1$ and $\left.\left\|\nabla u_{i}^{(1)}\right\| \leqslant \sqrt{(} \sqrt{2}+1 / 10\right)$ resp. $\leqslant 1 / 10$. Then we obtain from (4.12) - (4.16) using Schwartz inequality
(4.18)

$$
\text { - }\left(\int_{M \sim K_{1}}\left|\nabla u_{i}^{(1)}\right|^{2} d v o l\right)^{1 / 2} \leq c_{i} \cdot \frac{1}{4^{1}} \sqrt{ } \sqrt{2}(\sqrt{2}+1 / 10) \text { resp. } \leq \frac{C_{2}^{\prime}}{4^{1}} \cdot \frac{1}{10} .
$$

with

$$
\begin{equation*}
\left\|\Delta u_{i}^{(1)}-\lambda u_{i}^{(1)}\right\| \xrightarrow[i \rightarrow \infty]{ } 0 \tag{4.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\mathcal{K} u_{i}^{(1)}\right\| \leq \frac{c}{4^{1}} \tag{4.22}
\end{equation*}
$$

There exists a compact submanifold $K_{2} \supset \mathrm{~K}_{1}$ such that
$\|\omega \cdot-\omega\|_{M, ~},\|\nabla(\omega \cdot-\omega)\|_{M, ~}, K_{2}<1 / 4^{2}$. Let $K_{2}<U_{2}^{\prime} \subset U_{2}$, \bar{U}_{2} compact and $\phi=\phi_{2}$ such that $\phi \in C_{0}^{\infty}\left(U_{2}\right), \phi=1$ on U_{1}. Now proceed with $\phi=\phi_{2}, K_{2},\left(u_{i}^{(1)}\right)_{i}{ }_{(2)}^{\text {as }}$ with $\phi_{1}, K_{1},\left(u_{i}\right)_{i}$, getting by this procedure a sequence $\left(u_{i}^{(2)}\right)_{i}$, $\left\|u_{i}^{(2)}\right\|=1$, non-precompact and satisfying

$$
\begin{equation*}
\left\|\Delta u_{i}^{(2)}-\lambda u_{i}^{(2)}\right\|_{i} \longrightarrow \infty \tag{4.23}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|K u_{i}^{(2)}\right\| \leq \frac{C}{4^{2}} \tag{4.24}
\end{equation*}
$$

Iterating this procedure, we obtain for each j a sequence $\left(u_{i}^{(j)}\right)_{i},\left\|u_{i}^{(j)}\right\|=1$, non -precompact and satisfying

$$
\begin{equation*}
\left\|\Delta u_{i}^{(j)}-\lambda u_{i}^{(j)}\right\|_{i} \longrightarrow \infty \tag{4.25}
\end{equation*}
$$

$$
\begin{align*}
& \left(\int\left|\left[\omega^{\prime}-\omega,\left[\omega^{\prime}-\omega, u_{i}^{(1)}\right]\right]_{c}\right|^{2} d v o l\right)^{1 / 2} \leq \\
& \leq C_{1}\left(\int_{M-K_{1}}\left(-|\omega 1-\omega|^{2} d v o l\right)^{1 / 2} \leq c_{1} / 4^{l},\right. \\
& \left(\int\left|\left[\omega \cdot-\omega, \nabla u_{i}^{(1)}\right]_{c}\right|^{2} d v o l\right)^{1 / 2} \leq_{C_{2}}\left(\int_{M \vee K_{1}} \mid \omega \cdot-\omega \mathcal{R}_{\mathrm{dvol}}\right)^{1 / 2} . \\
& \left(\int\left|\nabla^{*}\left[\omega \cdot-\omega, u_{i}^{(1)}\right]\right|^{2} d \operatorname{vol}\right)^{1 / 2} \leq \frac{C_{3}}{4^{1}}(1+\sqrt{\lambda}(\sqrt{2}+1 / 10), \\
& \text { resp. } \leq \frac{C_{3}}{4^{1}} \cdot \frac{11}{10} \\
& \text { (4.17) - (4.19) imply } \\
& \left\|\Delta^{\prime} u_{i}^{(1)}-\lambda u_{i}^{(1)}\right\| \leqslant\left\|\Delta u_{i}^{(1)}-\lambda u_{i}^{(1)}\right\|+\left\|\mathcal{K} u_{i}^{(1)}\right\| \tag{4.20}
\end{align*}
$$

and

$$
\begin{equation*}
\| K_{u_{i}^{(j)}}^{(j)<\frac{c}{4^{j}} ~} \tag{4.26}
\end{equation*}
$$

Set $\varepsilon_{j}=\frac{l}{j}$. Then there exists an i_{j} such that

$$
\left\|\Delta u_{i}^{(j)}-\lambda u_{i}^{(j)}\right\|<\frac{l}{j}
$$

for all $i \geqslant i_{j}$. Finally we set $\varphi_{j}=u_{i}^{(j)}$. Then $\left\|\varphi_{j}\right\|=1,\left(\varphi_{j}\right)_{j}$ is non-precompact (since $\left(u_{i}\right)_{i}$ is non-precompact) and
i.e. $\lambda \in \zeta_{e}\left(\Delta^{\omega^{\prime}}\right), \zeta_{e}\left(\Delta^{\omega}\right) \leqq \zeta_{e}\left(\Delta^{\omega^{\prime}}\right)$. Exchanging ω^{\prime}, ω and repeating verbatim gives $\zeta_{e}\left(\Delta^{\omega^{\prime}}\right) \subseteq \zeta_{e}\left(\Delta^{\omega}\right)$. 口 Corollary 4.10. Assume $\left(B_{0}(M)\right), \operatorname{vol}(M)=\infty, \omega \in \zeta_{P, b, 0}$ and $\omega^{\prime} \in \operatorname{comp}(\omega) \epsilon^{2, b} \varphi_{P, b, 0}^{2}$ Then

$$
\left.\zeta_{e} \overline{\Delta^{\bar{\omega}}}\right|_{\left.\left(\operatorname{ker} \Delta^{\omega}\right)^{\boldsymbol{1}}\right)}=\left.\delta_{e} \overline{\left(\Delta^{\boldsymbol{\omega}}\right.}\right|_{\left.\left(\operatorname{ker} \Delta^{\omega^{\boldsymbol{\omega}}}\right)^{1}\right)}
$$

In particular, in $\Delta^{\boldsymbol{\omega}}$ is closed if and only if am $\Delta^{\omega^{\prime}}$ is closed. Proof. $\operatorname{vol}(M)=\infty \quad$ implies ger $\Delta^{\boldsymbol{\omega}}=\operatorname{ker}^{\Delta^{\boldsymbol{\omega}}}=\{0\}\left(\Delta=\nabla^{*} \nabla\right.$ implies that I_{2}-harmonic sections of $\Omega\left(g_{p}\right)$ are parallel, ie. $=0$, since $\operatorname{vol}(M)=\infty)$. \square
Remark. If we replace the assumption $\operatorname{vol}(M)=\infty \quad$ by $r_{i n j}(\mathbb{M})>0$, then 4.10 remains still valid since $\left(B_{0}(M)\right)$ and $r_{\text {ind }}(M)>0$ imply $\operatorname{vol}(\mathrm{M})=\infty$.
Corollary 4.11. Assume ($\mathrm{M}^{\mathrm{n}}, \mathrm{g}$) being open, complete, satisfying
 $c^{2, b} \bar{e}_{P, b, 2 m}^{2 m}$. If $\operatorname{im}\left(\nabla^{\omega}:{ }^{2} \bar{\Omega}^{p b}{ }^{2}{ }^{2} \eta_{2}\left(g_{p}, \omega\right) \longrightarrow{ }^{2} \bar{\Omega}^{1,2 s+1}\left(g_{p}, \omega\right)\right)$ is closed, $0 \leq s \leq m$, then the same holds for ω^{\prime}. \square Corollary 4.12. Assume (M^{n}, g) ω, ω^{\prime} as in 4.11. If in $T_{e} \phi_{\omega}$ is closed in ${ }^{2} \bar{\Omega}^{1,2 s+1}\left(g_{p}, \omega\right)$ then the same holds for $T_{e}{ }^{e} \boldsymbol{\phi}_{\boldsymbol{\omega}} \cdot \mathbf{a}$ This has good and far reaching consequences for the study of the configuration space in gauge theory on open manifolds.

REFERENCES

[1] EICHHORN J. "The invariance of Sobolev spaces over noncompact manifolds", to appear in Proc. Conf. on Partial Diff. Equ., Teubner-Texte gur Mathematic, Leipzig 1989.
[2] EICHHORN J. "Elliptic differential operators on noncompact manifolds", Teubner-Texte zur Mathematik 106 (1988),4-169. [3] KONDRACKI W., ROGULSKI J."On the stratification of the orbit space for the action of automorphisms on connections", Dissertationes Mathematicae CCL (1986),5-62.

[4]Hodge-de Rham decompositions", Demonstratio Mathematica vol. XVIII no. l (1985), 77-89.
[5] TRIEBEL H. "Höhere Analysis", Berlin 1972.
[6] YOSIDA K. "Functional Analysis", Berlin 1965.

JÜRGEN EICHHORN
ERNST-MORITZ-ARNDT-UNIVERSITÄT
SEKTION MATHEMATIK
FRIEDRICH-LUDWIG-JAHN-STRA®E 15 A
DDR-2200 GREIFSWALD

