
WSGP 10

Jarolím Bureš; Vladimír Souček
The Penrose transform and Clifford analysis

In: Jarolím Bureš and Vladimír Souček (eds.): Proceedings of the Winter School "Geometry and
Physics". Circolo Matematico di Palermo, Palermo, 1991. Rendiconti del Circolo Matematico di
Palermo, Serie II, Supplemento No. 26. pp. [97]--104.

Persistent URL: http://dml.cz/dmlcz/701482

Terms of use:
© Circolo Matematico di Palermo, 1991

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/701482
http://project.dml.cz


The Penrose transform and CłiíFord analysis 

J. Buгeš V. Souček 

1 Introduction 

The aim of the presented paper is to study the Penrose transform for solutions 
of the Laplace equation by means of Clifford analysis. 

The description of the Penrose transform in a general situation can be found 
in the book by R. Baston and M. Eastwood (see [2,5]). We shall discuss here 
the special case corresponding to orthogonal groups in even dimensions. The 
Penrose transform maps certain cohomology groups to solutions of (complex) 
Laplace equation in this case. 

The discussion of the Penrose transform in a general case ([5]) uses quite 
advanced and sophisticated tools, such as direct images of sheaves, sheaf coho-
mologies, the Bernstein-Gel'fand-Gel'fand resolution and spectral sequences. We 
are presenting here a more simple approach using the Dolbeault realization of the 
corresponding cohomology groups and a simple calculus with differential forms 
(as it was done in 4-dimensional case in [9]) The main new tools used are the 
Cauchy integral formula for solutions of the Laplace equation ([2,4]) and the 
Leray residue for closed differential forms (see [10,7]). 

The presented paper contains a short description of the results, the full version 
with all proofs will be published later. 

2 Isotropic Grassmannians 

The Penrose transform is always based on a diagram of homogeneous spaces (see 
[2] and [5]). In our case (i.e. for the description of solutions of Laplace equation 
in higher even dimensions), we shall need the following homogeneous spaces of 
the group SO(2ra,C). 
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Let us consider the quadratic form 

n+l 
Q(Z) = Y, ZW, Z = [Z\ Z"]*; Z', Z" G Ctt+1 

1 

on the vector space C2n,+2- The corresponding bilinear form will be denoted by 
( , ). We shall need the following type of flag manifolds: 

IGilt...tirt2n+2 := {[Li„.. .,Ltj]\Ltl C...CLtjC C2n+2; Q\Ltj = 0}. 

We shall drop the dimension of the ambient space if it is clear from the context. 
We shall use mainly the complex quadric IG\ (which can be considered as the 
compactification of the complex Minkowski or Euclidean space) and the spaces 
IGn+i and IGitn+i. The last two spaces are not connected, we shall work always 
with one of their connected components. The space IGn+\ can be interpreted 
either as the space of all maximal isotropic subspaces in the quadric IG\ or as 
the space of all pure spinors. Together with the natural forgetting maps, they 
form the basic diagram 

^ i , » + i 

M/ V 
IGn+\ IG\ 

3 Isotropic Stieffel manifolds 

The standard Stieffel manifolds are principal fibre bundles over Grassmannians 
(formed by bases of corresponding spaces) for the general linear group. The 
same is true for isotropic Stieffel manifolds. Elements of cohomology classes with 
values in sections of some line bundles will be conveniently described by d-closed 
differential forms on these isotropic Stieffel manifolds transforming properly with 
respect to the action of the general linear group. 

In particular, we shall consider the space 

IStn+x := 

{Z = [Z° , . . . , Z»]\Z> C C2t t+2, rank Z = r. + 1, 

<ZSZ>) = 0 ; i , i = 0, . . . ,nJ 

as a principal fibre bundle over IGn+i with the group G = GL(n + 1, C) acting 
from the right. The corresponding projection will be denoted by 7r. The same 
space will be considered as a principal fibre bundle over /G1)W+i 

7r': IStn+\ i-v IGitU+i 
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with 
*'(Z) = [Lu L.+J, Lx = span{Z0}, L t t+1 = span{Z°,. . . , Zn}. 

The group of the fibration consists of all regular matrices having the form 

9 = ( I M ,a € C, v* G Cn , 7 € GL(n,C). 

4 Minkowski space 

We shall consider solutions of (complex) Laplace equation only on subsets of the 
(complexified) Minkowski or Euclidean space 

CM C IGUCM := {L = span{Z}|Z G C2n+2 , Zm+1 ^ 0}. 

It is an open dense subset of IG\. It is useful to consider nonhomogeneous coor
dinates (x, y) on CM by the identification 

CM = { [ x , l , y , - x . y ] i | ^ y e C n } , 

where x • y := E i ^>J/j-

The corresponding spaces in the double fibration are then defined as 

F := . " ' ( C M ) = {[L1,L.+1]|L1 € CM}, 

T := M(F) = {L„+1|L„+i n CM / 0}. 
In this situation, it is very useful to restrict further allowed bases in IStn+\. 

Any basis 2 g F can be transformed into a basis of the form 

X 

1 
У 

-x-y, 

X 

0 

—x - y1 — X1 

X 

0 

У —X VI 

where x7, yJ € Gn\ x* • y7 + xJ • y* = 0; i, j = 1 , . . . , n. 
So we shall consider the fibration of F = CM X IStn over F, where F is 

formed by all (n +1) X (2n + 2)-matrices of the form shown above. The fibration 
7r : F H* F is a principal fibration with the group formed by all matrices of the 

form g -(0 7 j ' where 7 G GL(n, C). 

The fibration over the twistor space looks then like 7r; : F 
principal fibration with the group of all matrices of the form 

= {l 7 ) ' v Є O » , 7 € G L ( n , C ) . 

T, which is a 

(1) 
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5 Invariant forms 

We shall need some nice forms on the twistor space IGn. 
We shall define first the form u on the ordinary Stieffel manifold Stn over the 

Grassmannian Gn$n by 

un(Z):=f\ det(Z\...}Z
n
}dZi ...,dZ% 

- 1 ' — : 

where Z is n X 2n-matrix Z = (Z 1 , . . . ,Zn) G Stn (compare [8]). Under the 
substitution 

2 K Z-g, dZv-* dZ-g + Z-dg} g e GL(n,C), (2) 

the form un transforms asw f t K (detg)2nun. 
The isotropic Stieffel manifold IStn is defined by the set of equations <Pij(Z) := 

(Z\ Z>) = 0, i, j , = 1 , . . . , n; i > j . The form an is then defined by 

an := <fy>nJ(<fy>i2J . . . (d(pnn\(Jn).. .)|ist», 

where J denotes the division of differential forms. The (n — l)n/2-form an on 
IStn transforms a s a f t H (dett/)**"1**,,, under the substitution (2). 

We shall define a form 

an(Z) A an(Z) 
\Tkff I2\ l ! 

i^1 i ; 
Kn(Z) -— /y , !*f.mi».-1 > 

where the sum is taken over all subsets / C {1, - - -, 2n} with n elements and Mt 

denotes the determinant of the corresponding nx n minor of the matrix Z. The 
form nn is invariant under the substitution (2), so it is a well-defined continuous 
form of the top degree on the isotropic Grassmannian IGn. We shall normalize 
it in such a way that its integral over IGn is equal to one. 

The twistor space IGn is, in fact, a nontrivial fibration over the sphere 52»-2 C 
IG\$n with fibers diffeomorphic to IGn~i;2n-2* The fibration can be covered by 
two trivial products .£^-.2 X IGn-i;2n-2 (where E2n-2 denotes a Euclidean slice 
of C2»-2 C IGi;2n) and the forms KW_I (constant on J52w-2) coincide on the 
intersection of both maps, so they give us a well-defined form, say rn, on IGn. 
We shall consider also the form rn lifted to IStn. 
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6 The Penrose transform 

The fibration IStn+\ »-+ IGn+\ together with the representation 

g e GL(n + 1 , C ) H + (dets) € C 

defines the corresponding associated line bundle over IGn+i} we shall denote it 
by C. 

Take now a cohomology class (3 e H^0' -~ )(T, C1"71). We can represent it by 

a 9-closed form ft of the degree (0, "fo"1)) over F transforming as (3 *-+ (det 7)1""*/? 

under the substitution (2) with Z e f and g of the form (1). 
Then clearly the restriction of the form (3 A an is well-defined on every fiber 

u~x(Z) C F and we define the function 

ф(Z):= f ßЛa, 
Jv-ЧZ) (Z) 

on the Minkowski space. This function is called the Penrose transform of the ele
ment p. It can be shown that it is a holomorphic function satisfying the (complex) 
Laplace equation on CM and that the function depends only on the cohomology 
class of /?. 

The Penrose transform is a bijective map of the corresponding cohomology 
group onto the set of all holomorphic solutions on CM. The injectivity is proved 
by complex analytic methods in [6]. The most difficult part of the construction 
is to prove that the Penrose transform is surjective. We shall describe a new 
method of the proof, based on Clifford analysis, bellow. 

7 Integral formulae 

Let us describe now how to reconstruct the twistor form from the knowledge of 
a solution of the Dirac equation. Let us suppose that a function / = f(Z) on 
CM is a holomorphic solution of the Laplace equation A/ = 0 on CM, where 
A — V 2 w & 

Let us denote the complex null cone of the point Z by CiV^, i.e. 

CNZ := {W e CM\ \W - Z\2 = 0}. 

For any Z e CM, the value of the function / in the point Z can be expressed 
using values of the function (and its derivatives) on a (2n — l)-dimensional cycle 
E in CM\CNZ such that IndEZ = 1 (see [2,7]). 



102 J . BURES, V. SOUCEK 

The corresponding integral formula looks like: 

f m = l / E ? ( - i ) ' ( % - W%)DW% E?(-iy^fc-Pw^ 
JK) Kh \Z-W\*» (2n-2)\Z-W\*»-*' 

where K is the area of the unit sphere in E2n and DW% = dW\ A.. .AiW^ A.. .AdW^ 
(the hat over dWi means that this one-form is omitted). The form under the 
integral sign is the holomorphic continuation of the traditional form used for 
integral formulae for harmonic functions on Euclidean space. 

Consider now the (An — l)-form 

- LA7 A rU(^Y(Z-W%)DW% S?(-l)'';gfc-Pffi 
W " r M \Z - W\* + (2n - 2)\Z - ^ | 2 - 2 / ' 

where dZ = c^x A . . . A dZ2w. The form a; is a closed form on 

(CM x CM) \ M , M := {[Z, WJ|Z, W € CM; \Z - W\2 = 0}. 

Hence its Leray residue ([7,10]) is a well-defined cohomology class represented by 
a closed form [Res u] € H4n~2(M \ A), A := {[Z,W]\Z = W}. The value f(Z) 
of the field can be reconstructed not only by the integration of u over the cycle 
S, but by the integration of Res u> over a (An — 2)-dimensional cycle T C CNz 
such that its Leray cobord has the same properties as E does (for details see [7]). 

8 The choice of the map (/>. 

To get back the twistor form representing the field / and to prove that the Penrose 
transform is surjective, we have to choose a map 

<f>:CMx IStn *-* (M \ A) x ISt%. 

It has the following geometrical meaning: for any point 

Z= [Z°]Z\...,Zn] € CM x IStn 

we want to choose a point Z° ^ Z° in the a-plane span{Z°,. . . , Zn}. So we are 
looking for a map <f> satisfying the following conditions: 

<j>{Z) = [Z\Z»;Z\...,Z«] 

such that Z° 6 span-fZ0,..., Zn}, Z° # Z°. 
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Example 1. 
We shall describe now an example of such a map <j>. Let us consider a point 

Z = [Z°;Z1,...,Zn] G C M x IStn. Let us suppose that Z° = [> ,X;y , -x - y]% e 
C M and let us consider the Euclidean subspace E2n C C M defined by 

E2n := 

{W € CM\W = 

= [w + x - 1,1; tS + y + 1, -(w + x - 1) • (w + y + 1)]\ w G Cn}. 

It is the standard Euclidean subspace shifted to the point Z° + U, where U = 
[—1», 1; l n , n ] is a point on the imaginary axis. Now we define the map 

j>(\Z\Z\...%Z«\) = \Z\Z«;Z\...,Z«\ 

where 
Z° = E2nnspa,n{Z°,Z\...,Zn}. 

The intersection of E2n with the null cone CN^ 0 is a (2n — 2)-dimensional sphere 
and the described construction gives us a fibration of {ZQ} X IStn over this sphere. 

9 The inverse Penrose transform 

Given a solution / of the complex Laplace equation on CM} we can reconstruct 
the corresponding form on the twistor space T by the following procedure. 

For a given field / , we shall consider first the form u (given by the Cauchy 
integral formula, see Sect. 7) and its Leray residuum Res uy which is a (4n — 2)-
form on M. \ A. 

Let us choose any map <j> : C M x IStn •-> (M.\ A) x IStn which is homotopic to 
the map ^ constructed in the example above. K n denotes the natural projection 
from (Ai \ A) x IStn onto ( M \ A), then the form ^* 7r*(Res CJ) A Tn represents a 
well-defined cohomology class in the (de Rham) cohomology group Hp^ ' ( F , C ) 
(the form rn was defined at the last paragraph of Sect. 5). The cohomology class 
does not depend on the choice of the map <f> with the properties described above. 

The map of H^^r^^T, C^1^) into i f ^ + 1 ) ( f , C) given by the map 

/ J K J Z A / Z ^ A an 

is a well-defined injective homomorphism. It is possible to show by explicit com
putations (using the map ^) that the cohomology class of the form <i>* 7r*(Res u) A 
Tn belongs to the image of the homomorpism. It gives us a well-defined cohonol-
ogy class on the twistor space and it is not difficult to verify (using the Cauchy 
integral formula and the described construction) that this class is mapped to the 
field / by the Penrose transform. 
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