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1. Introduction 

In recent papers we have put forward 'spin gauge theories' of 
the electroweak interactions and of gravitation [1,2] and of 
gravitation combined with the electroweak interactions [3]; these 
models are based upon Clifford algebras. In a further paper [4], we 
have outlined our progress towards including the strong interactions 
to produce a unified model of the four fundamental forces. These 
models use curved space-time to describe gravitation, and we have 
introduced curved manifolds in such a way as to build in the 'Clifford 
structure' which we require. We do not start with a general topological 
manifold, and then make i t appropriate to our needs by building 
structure into it. Rather, we define a type of manifold which 
automatically includes the structure we need, namely, a 'Clifford 
manifold' with bui l t- in metric, tensor structure and spin structure. 
While our definition is avowedly less general than standard definitions 
of topological manifolds, we dispense with the awkwardness of 
introducing a spin bundle 'associated with' a tensor manifold. Since 
both tensor and spin structures are used to describe nature, i t is more 
satisfactory in physical models to use a single manifold which 
embodies both. Thus a Clifford manifold might provide a comprehensive 
model for the physical world. 

The concepts underlying the Clifford manifold are not new. We 
freely make use ideas from Cartan [5] and from standard versions of 
differential geometry [6], and our ideas overlap to some extent with 
those of, for example, Penrose and Rindler [7], Carmeli [8], Hestenes and 
Sobczyk [9], Benn and Tucker [10]. However, our particular mix of ideas 
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differs from those of other approaches in some respects, notably in the 
physical interpretation of the 'frame field'. 

We have not regarded our view as being a particularly significant 
mathematical development, but on several occasions when we have 
lectured on spin gauge theories, and in private discussions, we have 
been urged to set down in writ ing our ideas on manifolds. This talk is 
an attempt at giving a coherent account of these ideas. We do not, 
however, see this account as anything but a sketch of our approach; we 
shall talk of 'assumptions' rather than 'axioms', and in general we shall 
not attempt to give a ful l and rigorous account. 

The general interest in this approach stems from the fact that 
the majority of theories in mathematical physics are based on metric 
spaces and on associative algebras; these are the two features 
automatically included in Clifford manifolds. Thus the simplification 
which we achieve is because we choose to assume metricity and 
associativity from the beginning. Of course, there are purely 
topological physical theories, and there are models using, for example, 
octonians for which Clifford manifolds may not be appropriate. 

2, Definition of Clifford Manifolds 

There appear to be two fundamental features to be included in 
mathematical models describing the natural world. The f i rs t is the 
curvature of physical space arising in gravitational theories and the 
second is the spin of elementary particles. The Clifford manifold that 
we are developing automatically includes mathematical structures 
which represent both of these important features. The curved space is 
represented by a manifold and spin is introduced by imposing a Clifford 
structure upon it. 

It is well known that an n-dimensional real manifold cannot 
generally be described in terms of a single non-degenerate coordinate 
system. We therefore adopt the familiar concept of a manifold as a 
union of a countable number of open sets, called 'patches', on each of 
which a non-degenerate coordinate system can be defined. We shall be 
defining what we mean by 'non-degenerate', but shall not discuss 
standard differential geometric concepts such as 'patch', 'chart', or 
'atlas'. Our work so far is confined to local properties of manifolds; 
although we believe that our approach may provide a convenient 
method of dealing with homological and homotopic properties, we 
have so far made no attemDt studu these aDDlications. 
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We take as our starting point the set of coordinates 
x = {x.u; ji=i f2 n} which may be defined at every point x of a single 
patch P. Increments of the coordinates {xW are denoted by {SXP} and 
derivatives with respect to {xu} by {3U}. We view the increments as 
magnitudes only, and the derivatives purely as differential operators, 
that is, not as 'vectors' in any sense, as in some presentations of 
differential geometry. Consequently {8xu} and {9U} are both sets of 
commuting quantities, satisfying 

[8xu,Sxu] = 0 (2.1) 
and 

[3)1.9 J = 0. (2.2) 
On a single patch P, the coordinates x may be replaced by a new 

set 
y = {yu}, provided that 

y^ = Y"(x) (u=l,2,...,n) ' (2.3) 
are several times differentiate, with non-zero Jacobian: 

au(y^) * 0. (2.4) 
The increments transform by 

dyu = au(Y^) dxP -- A^u(x) dx^ . (2.5) 
under changes of coordinate system. 

Our first assumption introduces the Clifford structure which is 
used to define the spin structure on the manifold: 
Assumption 1 

A spin space is generated by the elements of a Clifford algebra 
the vector basis {2(, i=l,2,...,n} of which spans an n-dimensional linear 
space. An 'orthonormal' basis {e^ satisfies 

{ej.ej} -- etej + 2-^^ 
= 2lTiij, (2.6) 

where I is the unit scalar of the algebra and (T^J) is the non-singular 
'Minkowski' metric 

(Hip = diag (+l,..p times..,+1,-1,..q times..,-1), (2.7) 
so that the signature is (p+,q-) with p+q=n. 

The spin structure is linked with each point x of a patch P of the 
manifold by taking the set {e j as a local basis for the tangent space 
Tx at x: 
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Assumption 2 
The global structure of the manifold is determined by defining 

a vector basis {eu(x); j!=l,2,...,n} as an x-dependent linear combination 
of the set {e j : 

e„(x) = hu<x) e|, (2.8) 

The coefficients {hu
j(x)}, defining the 'vielbein field1, are several 

times differentiable on a patch. Further, the matrix (hu
j(x)) must be 

real and nonsingutar. 

The assumed differentiability of the {fytx)} implies that on a 

patch the basis (eu(x)} is continuous in x. Then continuity of {3uy} 

ensures that transformed bases are also continuous. 
It fol lows that the x-dependent basis {eQ(x)} forms a vector 

basis of a Clifford algebra at each point x, since from (2.6) and (2.8) 
{eQ(x),ey(x)} -- eM(x)eu(x)+eu(x)eu(x)} 

= 21 g^(x) , (2.9) 
where 

gUu(x) = V ( x ) M x ) n.j- (2-10) 
The functions {guu(x)} are differentiable, and define the metric on the 
manifold; (2.10) is the standard relation between the metric and the 
vielbein field. 

We have already indicated that we intend to view the increments 
{SXP} as magnitudes. By introducing the tangent space Tx> we are able 
to define them more precisely as magnitudes of displacements. Since 
the {e„} are vectors in Tx, a displacement in Tx may be defined by 

Ss = SxPeu> (2.11) 

When the increments {Sx*1} become the infinitesimals {dxJ1}, we may 
link'this displacement in Tx to the incremental displacement on the 
manifold at x: 
Assumption 3 

There exists a choice of the set of the vielbein field {hu
j(x)} 

such that 
ds -- dxP eM(x); (2.12) 

is the general infinitesimal displacement on the manifold. We call ds 
the 'linear metric1. At each point, the {dxJ1} transform in the same way 
as {x*1} and {eu(x)} transform covariantly with the increments {dxM}. 
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This ensures that ds is invariant under changes of the coordinate 
system. 

Assumptions 1 and 2 relate the algebraic structures at every 
point of a patch P. The spin space algebra is common to every point; in 
particular, the unit I is a constant element related to all points of P. 
We do not regard each point as possessing its own Clifford algebra; 
rather, there is a single algebra defined by (2.9) which varies 
continuously through the patch. This view of a single 'distorting 
algebra1 accords with physical intuition: elements of a Clifford 
algebra, for example spinors, are taken to represent physical 
particles; these are extensive 'objects1 in physical space-time, and are 
not associated with a single point x. The 'distorting algebra1 view is 
also mathematically essential: later, we shall differentiate (2.9) and 
other equations containing the basis vectors {eQ(x)}. This means that 
we take the limit of differences of eM(x) at different points x; we 
must therefore view the vectors associated with different points as 
belonging to 'the same algebra1 which distorts as x changes. This view 
is reinforced by the fact that we shall assume that 3UI is zero, so 
that the unit I is 'the same object1 at all points of the manifold. 

Since the matrix (hQ'(x)) is real, continuous and non-singular, 
the definition (2.10) ensures that the matrix (rijj) is congruent to 
(gnu(x)) at every point of P. Thus, by Sylvester's Theorem [11], the 
matrix (guu(x)) is non-singular, with signature (p+,q-) at all points. If 
the manifold represents 'normal' space-time, the assumption that the 
metric is non-singular is valid. However, if we wished to study black 
holes, it would be necessary to allow degeneracy of the metric at the 
boundary. 

As an example we consider four-dimensional space-time, the 
algebra of which is usually taken to be the Dirac algebra Cli3, with 
n=4, p=l and q=3. The basis vectors (eM(x)} are then represented by 
4x4 matrices 

YjiOO = y ( x ) Yi. (2.13) 
where {y{, i=l,2,3,4} is a set of Dirac matrices. We call the set {-yu(x)} 
the 'frame field', since it represents a frame of reference at each 
point of the space-time manifold. In our 'spin gauge theories' of 
particle interactions we assume that the frame field is a physical 
field; the mass of a fermion is interpreted as an interaction between 
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the fermion and the frame field. The basic relation (2.9) tells us that 
the frame field is the 'Dirac square root1 of the space-time metric 
tensor guu(x), which we know to be associated with the gravitational 
field; we have shown [2,3] that the frame field interaction does indeed 
give the usual Einstein-Hilbert gravitational Lagrangian, modified by a 
term providing a very short-range force. 

The 'linear metric1 of C1>3 

ds = YuM dx" (2.14) 
is the incremental displacement on the space-time manifold, and 

ds ds = g u u dxPdx^ I -- ds2 I, (2.15) 

defining the usual quadratic metric ds2. The linear metric (2.14) 
contains more information than the quadratic metric, since it defines 
both the tensor metric g u u and the spin frame -yp; this is why the 
Clifford manifold is both a tensor and a spin manifold. 

Since the {eu(x)} at each point x are built up from the same spin 
space algebra, we may deduce that the derivatives 

3uey(x) = lim {[eu(xi,..,xJI+SxJi,..,xn) - eu(xi,..,xJi,..,xn)]/Sx*1} 
exist and are continuous. The definition (2.8) leads us to conclude that 
the derivatives are vectors in the spin space algebra at the point x. 

3. The Connection Coeff ic ients 

A Riemannian manifold has only a tensor structure and no spin 
structure. Thus the covariant derivatives of quantities on a 
Riemannian manifold involves only a 'tensor connection1, that is, they 
only take account of the tensor properties of the quantity being 
differentiated. On the other hand a Clifford manifold has both tensor 
and spin structures. We thus have several different types of quantity 
that must be differentiated: those with tensor properties only, those 
with spin properties only and those with both. The covariant 
derivatives of these quantities must take into account these various 
properties, and include tensor and spin connections as appropriate. 

For a pure tensor quantity, the covariant derivative is that of 
the Riemannian manifold; for example, the. covariant derivative of a 
rank 1 tensor field an(x) is 

Dua^ = 3uay - ruyP ap. (3.1) 
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where ruuPare are the 'tensor connection coefficients'. The 
condition Duay=0 defines 'parallel transport' of rank 1 tensors on the 
manifold. 

As an illustration of the form of the covariant derivative when 
both tensor and spin properties are involved, we consider the Clifford 
vector CTJCX); its covariant derivative is given by 

Due^ = 3uey - ru uPep + [Gu,e J , (3.2) 
where 

[Gu,e J -- G^e^- eyGu, (3.3) 
and Gu is known as the 'spin connection'. 

The inclusion in Due yof the terms involving both TUUP and Gu is 
a result of our statement that a Clifford manifold embodies both 
tensor and spin structures. The tensor structure is separated out if 
we differentiate the basic relation (2.9) with respect to x^, 
remembering that I is constant on the manifold; then 

{Daeu(x),eu(x)} + {eM(x),Daeu(x)} = 21 Dcyguu(x). 
Substituting from (3.2) and using (2.9) itself, we establish the usual 

Dpguu = QpQpy - rp M t fgu a - r p ^g U C J , (3.4) 
which does not involve the spin connection. 

Assumption 4 
The Clifford manifold is defined by the condition that 

Duey = 0 (VJ=1,2 ,n). (3.5) 

This is the condition that the vector basis is 'parallel transported1 on 
the Clifford manifold. 

As we commented at the end of the previous section the 
derivatives 3 ^ are Clifford vectors. Thus the condition (3.5) 

implies that 
Gu = V22 eiejTiikhk<

7(DuhaJ) + SUI, (3.6) 
where 

D u fV = 3 u fV - TuaP iV (3.7) 
and Su is an arbitrary field. 

By using the condition (3.5) together with the equation (2.9), we 
may show that the metric tensor gUu(x) satisfies 



1 3 0 J S R - CfflSHOLM - R.S. FARWELL 

Dpguu * 0 (3.8) 
identically; that is, it is also parallel transported. Thus, by using 
(3.4) we may deduce that 

Q\iv,o = ^\io,v + *ua,u (3.9) 
where 

r»vp = gp a rMU>(,. (3.10) 
If the tensor connection rNu,a is assumed to be symmetric in the 
suffixes JJ,VJ, (3.9) implies that it takes the usual Riemannian form. 

The condition (3.5) has greater information content than the 
usual Riemannian condition (3.8) since we can deduce (3.8) from (3.5). 
This shows the advantage of employing a Clifford manifold since both 
the tensor and the spin connections are automatically introduced. In 
the same way, the linear metric ds, defined by (2.14), defines both the 
tensor and the spin structures of the manifold. The usual quadratic 
metric ds2 defines only the tensor structure.lt would be possible to 
develop this approach further, introducing dual spaces and the 
curvature tensor. But it is perhaps more useful to give a brief 
description of the group properties on M and on Tx. 

4. Group propert ies 

On a patch of a curved manifold, the allowable sets of 
coordinate transformations 

yu = Y^(x) (4.1) 
are those with continuous partial derivatives and non-zero Jacobian. 
Covariant derivatives of vector fields on the manifold are defined by 
(3.3). We can introduce tensor fields and their covariant derivatives 
in the usual way. We have seen that the Clifford vector basis {eu(x)} 
has both vector and spin properties; it can therefore be used to define 
both tensor and spin transformation properties. 

Sets of quantities bearing Latin suffixes have transformation 
properties in the flat tangent space Tx, each suffix transforming under 
the (generalised) Lorentz group of (pseudo-)rotations. For example, 
consider the basis vectors {y\} of the Dirac algebra, satisfying 

-Y i 2 = -Y22 = -Y32 = 1A2 = I 
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where I is the 4x4 unit matrix. Rotations in the (1,2) plane of Tx are 

generated by the bivector Y12 s Y1Y2. w i t h Y122 = -'• T h e fundamental 
transformation is the spin transformation 

Yi - exp(-1/29Yi2) Yi exp(1/29Yi2) (4-2) 
for i=l,2,3,4. Since this transformation is a similarity 
transformation, any element C of the algebra transforms in the same 
way: 

C - exp(-1/29Yi2) C exp(!/29Yi2)- (4.3) 
Since Y12 anti-commutes with Yi and Y2> but commutes with Y3 and yAt 

we can deduce the vector transformation on (YJ}: 

YI - Yi exp(9Yi2) = Yicose - Y2 sine, 

Y2 - Y2 exp(0Yi2) = Yi sine + Y2 c o s Q . (4-4) 

Y3 - Y3. Y4 - Y-4-
Note, however, that this form of transformation is specific to 
vectors in Tx, whereas (4.3) is quite general. 

In a very similar way, the transformation 
C - exp(-1/2eYi4)

 c exp(1/2eYi4)> (4-5) 
in which Y H 2 = I. defines the effect of a hyperbolic rotation or 'boost' 
in the 2X direction, with hyperbolic functions replacing the circular 
functions. 

One advantage of the Clifford approach is the immediacy of the 
relationship between the spin transformations, exemplified by (4.2), 
and the corresponding vector transformations such as (4.4). We 
emphasise again that the spin transformations such as (4.3) define 
almost immediately all orthogonal tensor transformations on Tx, not 
just vector transformations; spin transformations are thus more 
fundamental than tensor transformations. The relationship between 
(4.2) and (4.4) exemplifies the very simple way in which the spin 
groups are related to the orthogonal groups through the Clifford 
approach. Symplectic groups also arise very naturally through 
Clifford algebras, in particular through complex Clifford algebras. 

The spin transformations ascribed to spinors are not 
equivalence transformations of the form (4.2)-(4.5). Spinors are 
defined as elements of left ideals of a Clifford algebra, and are of the 
form 

y = CP, (4.6) 
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where P is a fixed idempotent of the algebra. In order to preserve the 
idempotent structure (4.6) under transformation, the spinor 
transformation corresponding to (4.3) is taken to be 

y -> expt-tee-y^) Y- (4.7) 

A dual (or conjugate) spinor, denoted by y*, is an element of a right 
ideal of the algebra; to preserve the ideal structure, the 
transformation corresponding to (4.3) is taken to be 

y* - <p* sxp(1/2eYl2). (4.8) 

An element of the 'density matrix1 yy* then transforms by the same 
rule (4.3) as the general elementof the algebra. Since this is the only 
combination of spinors that occurs in quantum mechanical 
calculations, the transformation rules (4.7) and (4.8) do not violate 
the general rule (4.3) in practice. 

The vielbein field {(ryCx)} is the basic link between the manifold 
and the spin space; as a consequence, it has transformation properties 
appropriate to both. The lower suffix V transforms covariantly to 
the upper suffix on the basis vectors ^ . The upper suffix V 
transforms under the Lorentz group in the spin space [12]. 
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