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CELLS OF HARMONICITY 

MARTIN KOLAR 

The study of complexified partial differential equations was inspired by quantum 

field theory. The analytic continuation of fields from the Euclidean region into 

Minkowski space is a standard procedure in QFT nowadays. From the mathematical 

point of view, we are interested in partial differential equations on domains in C n . 

It is a typical feature of this study that eliptic and hyperbolic equations, formely 

considered separately, appear as restrictions of one common complex equation. In 

the complexified version of a partial differential equation, real derivatives —— are 
OXi 

r\ r\ £ 

replaced by complex -r— while we assume ------ = 0 . So all solutions are holomorphic 
OZi OZi 

maps which moreover satisfy the complex differential equation. 

One of the most natural questions is that of analytic continuation of solutions and 

domains of holomorphy. In the classical case, there is a nice theory which gives full 

description of domains of holomorphy in terms of local behaviour of their boundaries. 

When we take instead of the whole class of holomorphic maps a subclass made up 

by the solutions of a complex differential equation, the situation is different. For 

example, there are no longer smooth domains of holomorphy. 

Our aim in this paper is to describe the domains of holomorphy for solutions to the 

complex Laplace and Dirac equations. We call them cells of harmonicity. We deduce 

their properties mostly by examining geometrical properties of the characteristic 

surface (which is the same for both equations), namely the complex null cone. We 

consider only even dimensions. The methods we use are not instantly applicable 

in odd dimensions. After some examples we find a necessary condition for cells of 

harmonicity. For a certain class of domains we obtain full characterization of cells 

of harmonicity. Further we apply these results to the case of analytic continuation 

from the Euclidean region into Minkowski space. We get a simple proof of a result 

by Gindikin and Henkin in dimension 4 and its generalization to higher dimensions. 
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In C n we use the following notation. Let z = (z1? z2,... , zn), Zi = xt- + iyi 

/ n n \ 2 

(euclidean norm) \\z\\ = I / _ £ ? + / . 2 / 2 J 
\ . = i , = i / 

N 2 = E - . 2 ,~2 

ť = l 

(real scalar product) (z,z')n = 2_\xix'i + ViUi 
ť = i 

(hermitian scalar product) (z,z')c = /]zizi 
ť = i 

(Euclidean space) E n = {z G C n : yf- = 0 for all i = 1,2,..., n} 

The set 
CN(z') ={zeCn: \z' - z\2 = 0} 

is the complex null cone of a point z'. 
The real Laplace operator is defined by 

n д2 

дx2 

ť=i a x * 

and its complex version 
a o = £ ^ 

A solution to the complex Laplace equation A c / = 0 on a domain Q, C C n is a 
n a 2 f holomorphic function of n complex variables which satisfies __] --^t = 0 in ft . 

. = 1 • 

In order to introduce the complex Dirac operator, let us consider the complex 

Clifford algebra Cn over C n . We have an embedding of C n into Cn and the 

vectors {e,} of the canonical basis are generators of C^ satisfying eitj + ejCi = 26ij 

. Every element z E Cn can be expressed in the form 

z = zQl + ... +^ti...i*Ci1...Cifc + . . . + zi,^ne1...en 
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We define its norm 

NI = (lko||2 + ... + |kl...n||2)2 

which for C n C Cn coincides with the previous definition. Let us denote 

r, V - 9 

U dXi 

r, V - d 

i= i OZt 

Let S be any left ideal in Cn . A solution to the complex Dirac equation Dcf = 0 

is a map from a domain in C n to S which components are again supposed to be 

holomorphic functions. 

We will often think of Laplace and Dirac equation at once. That is why we denote 

the two operators Dc and A c by a common symbol dc • So dc denotes either the 

complex Laplace operator A c or the complex Dirac operator Dc • We denote by 

Hd(Q) the space of all solutions to the equation dcf = 0 in 0, . 

DEFINITION 1. A domain ft C C n is called the domain of holomorphy of a holo

morphic map f if for any point z G dQ, and for any neighbourhood U(z) there is no 

holomorphic map f such that f = f on a connected component ofU(z) D ft. 

We say that ft is a cell of harmonicity if it is the domain of holomorphy of a map 

f e Hd(Ci). 

One way to prove that a domain is a cell of harmonicity is to find a solution 

unbounded on the boundary of ft , or it is enough to find for each boundary point 

a solution unbounded in that point. It suffices to do so for a dense subset of the 

boundary. 

THEOREM 2. Let E be a dense subset ofdQ, and suppose that for any x G E there 

is a map from Hd(Q.) which is unbounded in x . Then there is a map f G -Hd(ft) 

unbounded on dQ, , so Q, is a cell of harmonicity. 

PROOF: Let E' be a countable subset of E . Let {xn} be such a sequence of points 

from E' that each point appears infinitely many times in the sequence. Denote 

by ft„ a map from Hd(£l) unbounded in xn . Consider an increasing sequence of 
oo. 

compact subsets Kn C ft such that (J Kn = ft. By induction we construct a 
n = l 

sequence {zn} C ft and a sequence of maps fn G -ffd(ft) : 
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(1) z\ G ft arbitrary, f\=h\ 

(2) We take zn G ft such that ||.rn — zn\\ < ± and 

IM~V.)II > -"UM*, í n + || 5J/ ť(-„)| | j 
where ||/in||/rn = sup ||lin(:r)| |. Let us denote 

xEKn 

, 1 K 
Jn -"IIM.Y-

oo 
The map / = ^Z /» converges uniformely on every Kn , because 

n = l 

H/mlkn < ^ 7 ^ every m > n 

. So we have / G -H'd(ft) . But 

ll/(*»)ll>n 
and any point of 9ft is an accumulating point of the sequence {zn} , so / is un

bounded in 3ft. 

EXAMPLE 3. (a) Let p e Cn . The map 

W = |2-p|n-2 

is an elementary solution to the complex Laplace equation. Similarly 

m " ^ -
is an elementary solution to the complex Dirac equation. Both elementary solutions 

are unbounded on the complex null cone CN(p) . 

(b) The second basic type of singularity is a complex hyperplane. Let us consider a 

map 
/ w = E E T ^ r «"6C") 

We have 
d*f 2 2 , ,2 2 

R = V i ( E ^ ^ F a n d A c / = H ( E r = 1 ^ ) 3 

So f is a solution to the complex Laplace equation if and only if v G CN. The 

singularity for f is then the complex hyperplane perpendicular to v . In the case of 

Dirac operator, the same is true for 
/ ( * ) = E ^ T 

Example 3(a) leads to the following theorem which contains as a special case cells 

of harmonicity defined over domains in E n and over some more general manifolds 

which were studied in [4] and [5]. 
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THEOREM 4. Let 7 be a closed subset of C n . Then each connected component of 

the set C n \ IJ CN{x) is a cell of harmonicity. 

PROOF: Let ft be one of the components and x G dft . There is a point x' £ 7 for 

which \x — x'\2 = 0 . The elementary solution for the point x' is defined in ft and 

it is unbounded in x . By Theorem 2 ft is a cell of harmonicity. 

As in the classical case we can define the notion of envelope of holomorphy of a 

domain ft to be the minimal cell of harmonicity containing ft. There are several 

examples of constructing such envelopes in [4]. We mention one of them here in a 

form that will be usefull in the proof of Theorem 7. 

THEOREM 5. Let P be a real n-dimensional afBne subspace of C n which contains 

no non-zero null vectors. Let M be an open connected subset of P . Let f be 

a solution to the equation dcf = 0 defined on a neighbourhood of M in C n . 

Then we can always continue f analytically to the connected component of the set 

C n \ (J CN{x) determined by M . 
xedM 

Theorem 5 gives an idea what the boundary of a cell of harmonicity looks like. If 

we can find a real n-dimensional subspace without null vectors near the boundary 

of a domain we are able to continue all solutions beyond the boundary and such 

domain is not a cell of harmonicity. 

LEMMA 6. Let T be a (2n-l)-dimensional linear subspace of C n and let v be its 

normal vector . If \v\2 ^ 0 , then T contains a real n-dimensional subspace which 

does not contain any non-zero null vectors. 

PROOF: Let Tc = (v)±c be the complex orthogonal complement to v . Let us 
n 

consider a complex basis {.2;1,...,0n"1} of Tc such that \zx\2 -^ 0 and JZ zkzi = 0 
fc=i 

for i ^ j . There is a complex number c such that 

{z\iz\...,zn-\izn-\cv} 

is a real basis of T . Let us choose n vectors {x1, ...,xn} from that basis in such a 

way that all the numbers l^1!2, |x2 |2 , . . . , |xn |2 lie in one halfplane in C determined 

by a straightline passing through the origin. For all non-zero real combinations of 

these vectors we have 

|£a ť*f = Ëв?l-fî-0 
t = l ť = l 

THEOREM 7. Let ft be a cell of harmonicity with Lipschitz boundary. Let XQ G 9ft 
and suppose that TXo9ft exists. Let n be the unit normal vector. Then \n\2 = 0. 
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PROOF: Suppose \n\2 ^ 0 . By Lemma 6 there is an n-dimensional subspace P C 

TXod£l without null vectors. The following number expresses the angle between P 

and CN(x0): 

a = arccos inf 
pGP \{x0} 

q£CN(xo)\{x0} 

(p-XQ,q-Xo)R 

l lp -zo l l lk -zo l l 

. Since P contains no null vectors, we have a > 0. Denote 

r> / r-iu \ (v-xo9n)R ^ II-a\ 
Qe = [ye U(x0,e) : arccos | | y _ S o | | -? - J " ) 

. By the Lipschitz property, there is e© > 0 for which Q€o C Q, . We shift the space 

P in the direction of the inner normal vector and define 

. Then M = P' D Q€o is a convex open set in P' and we have CN(x) C\ P' C 

ft for every x on the segment (xo,^o + ^fn) • So xo lies in the component of 

C n \ (J CN(x) determined by M and by Theorem 5 we can continue all solutions 
x£dM 

to a neighbourhood of xo , so Q, is not a cell of harmonicity. 

COROLLARY 8. There are no bounded cells of harmonicity with smooth boundary. 

PROOF: For a smooth compact manifold of codimension 1 each unit vector occurs 

as a normal vector in some point. 

It is not difficult to find an example which shows that the condition from Theorem 

7 is not sufficient. It is sufficient when we confine to convex domains. 

THEOREM 9. Let £1 be a convex domain in C n . Then the following assertions are 

equivalent: 

(i) ft is a cell of harmonicity. 

(ii) Whenever the normal vector nx exists in a point x E d£l , it is a null vector 

, i . e. | n x | 2 = 0 . 

PROOF: Denote 

V = {x £ d£l such that nx exists } 

By Rademacher theorem, V is dense in d£l. So it suffices to prove that for each 

point x G V there is a map fx G Hd(£l) which is unbounded in x . In order to do 

so, take 

fx(z) = ^ n / - \ 
lsi=i Zi(nx)i 
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and 
/ / \ n x 

fx(z) = -=^-E,n=i zi(nx)i 

for Laplace and Dirac operators respectively. 

We apply Theorem 9 to give further examples of cells of harmonicity. 

EXAMPLE 10. Let us take an orthogonal basis of R 2 n containing only null vectors, 

e. g. 

{z\...,zn,iz\...,izn} 

where 

z\ = 1, z\+1 = i for k odd 

zk_1 = i, zk = 1 for k even 

and z\ = 0 otherwise. The cube spanned by these vectors has normal vectors from 

CN on all its faces and so by Theorem 9 it is a cell of harmonicity. 

EXAMPLE 11. Let us denote 

n-l 

M+ = {z = x + iy :X2

П-J2УІ> 0) 
k=l 

n-l 

For z G 5M+ we .have xn — __ y\ = Q and the null vector 
Jk=i 

{-m,-iy2,>~,-iyn-i,Xn) 

is a normal vector to dM+ in the point z . Since M+ is convex, we conclude that it 

is a cell of harmonicity 

In dimension 4, the domain M+ was studied by Gindikin and Henkin in [3]. 

They proved that any solution to the Laplace and Dirac equations can be holo-

morphically continued from the Euclidean halfspace xn > 0 to M+ and that M+ 

is the maximal domain with this property. The result concerning maximality they 

proved by applying Penrose twistor transform, which allows to reduce the prob

lem of holomorphic continuation of solutions to the classical theory of functions 

of several complex variables (results by Andreotti-Norguet about cohomologies of 

1-pseudoconvex domains with coefficients in holomorphic sheaves). So as a con

sequence of Theorem 9 we got a straight and simple proof of this result and its 

generalization to arbitrary even dimension. 



1 9 6 MARTIN KOLAR 

REFERENCES 

1. A.Andreotti, F.Norguet, La convexite holomorphe dans Vespace analytique des cycles 

d'une variete algebrique, Ann. Scuola Norm. Super. Pisa Sci. fis. e mat. 25,No. l 

(1971), 59-114. 

2. M.Bures, V.Soucek, Generalized hypercomplex analysis and its integral formulas, Com

plex Variables : Theory and Application 5 (1985), 53-70. 

3. S.G.Gindikin, G.M.Henkin, Penrose transform and complex integral geometry, Sovre-

mennyje problemy matematiky,Tom 17 (in Russian) (1973), 57-112, Moscow. 

4. M.Kolaf, Envelopes of holomorphy for solutions to the Laplace and Dirac equations, 

(to appear). • 

5. J.Ryan, Cells of harmonicity and generalized Cauchy integral formula, Proc. London 

Math. Society(3) 60 (1990), 295-318. 

6. B.V.Sabat, "Introduction to Complex Analysis, Part 2," Nauka, Moscow, 1976. 

FACULTY OF MATHEMATICS AND PHYSICS, CHARLES UNIVERSITY, SOKOLOVSKA 83, 186 00 
PRAHA CZECHOSLOVAKIA 


		webmaster@dml.cz
	2012-09-18T10:34:33+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




