## WSGP 10

## Wiesław Sasin <br> The wedge sum of differential spaces

In: Jarolím Bureš and Vladimír Souček (eds.): Proceedings of the Winter School "Geometry and Physics". Circolo Matematico di Palermo, Palermo, 1991. Rendiconti del Circolo Matematico di Palermo, Serie II, Supplemento No. 26. pp. [223]--232.

Persistent URL: http://dml.cz/dmlcz/701497

## Terms of use:

© Circolo Matematico di Palermo, 1991

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.


This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Wiesław Sasin

ABSTRACT. In this paper we study some geometric properties of the wedge sum [10] of differential spaces in the sense of Sikorski [7],[8]. In Section 1 we review some of the standard facts on Sikorski's differential spaces. In Section 2 we describe some basic notions and facts concerning the singularity which is obtained by taking the wedge sum of differential spaces.

1. PRELIMINARIES. Let $M$ be any set and let $C$ be any nonempty set of real functions on $M . B y \tau_{C}$ we shall denote the weakest topology on $M$ in which all functions from $C$ are continuous. For any subset $A C M$, let $C_{A}$ be the set of all real functions $\beta$ on $A$ such that, for any $p \in A$, there exist an open neighbourhood $U \in \tau_{C}$ of $p$ and a function $\alpha \in C$ such that $\beta|A \cap U=\alpha| A \cap U$. By scC we shall denote the family of all real functions on $M$ of the form $\omega \cdot\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in C$, where $\omega \in \xi_{n}$, $\alpha_{1}, \ldots, \alpha_{n} \in C, n \in N$, and $\varepsilon_{n}=C^{\infty}\left(R^{n}\right)$.

A set $C$ of real functions on $M$ is called a differential structure on $M$ if $C=C_{M}=\operatorname{scC}$ [8]. The pair ( $M, C$ ) is said to be a differential space; the family $C$ is then a linear ring [8] and its elements are called smooth functions on M. For a. set $C_{o}$ of real functions on $M$, the set $\left(\mathrm{scC}_{0}\right)_{M}$ is the smallest differential structure on $M$ containing $C_{0}$. A differential space ( $M, C$ ) is said to be generated by $C_{0}$ if $C=\left(s c C_{0}\right)_{M}$.

If ( $M, C$ ) is a differential space and $A$ is a subset of $M$, then $\left(A, C_{A}\right)$ is also a differential space, which is called the differential subspace of (M,C). By a tangent vector to (M,C) at a point $p \in M$ we shall mean any linear mapping $v: C \longrightarrow R$ which satisfies the condition

$$
v(\alpha \cdot \beta)=v(\alpha) \cdot \beta(p)+\alpha(p) v(\beta) \quad \text { for } \alpha, \beta \in C
$$

By $T_{p} M$ we shall denote the linear space of all tangent vectors to ( $M, C$ ) at $p \in M$, called the tangent space to ( $M, C$ ) at $p \in M$.

Let ( $M, C$ ) and ( $N, D$ ) be differential spaces. A mapping
$f: M \longrightarrow N$ is said to be smooth if $f^{*}(\alpha):=\alpha \circ f \in C$ for every $\alpha \in D$. A mapping $f: M \longrightarrow N$ is said to be a diffeomorphism of ( $M, C$ ) onto ( $N, D$ ) if $f$ is a smooth bijection and $f^{-1}$ is smooth. If $f: M \longrightarrow N$ is smooth and $v \in T_{p} M$, then the formula

$$
\left(f_{* p} v\right)(\alpha)=v(\alpha \circ f) \text { for } \alpha \in D \text {, }
$$

defines a vector $f_{* p} v$ tangent to (N,D) at $f(p)$.
Let $T M:=\bigsqcup_{p \in M} T_{p}^{*} M$ be the disjoint union of tangent spaces to ( $M, C$ ) and let $\pi: T M \longrightarrow M$ be the canonical projection. We denote by TC the differential structure on $T M$ generated by the set $\{\alpha \circ \pi: \alpha \in C\} \cup\{d \alpha: \alpha \in C\}$, where $d \alpha: T M \longrightarrow R$ is given by $(d \alpha)(v)=v(\alpha) \quad$ for $v \in \mathbb{T M}$.
Let $\mathfrak{X}(M)$ be the $C$-module of all smooth vector fields tangent to ( $M, C)$. Every vector field $X \in \mathfrak{X}(M)$ is a smooth section of $\pi: T M \longrightarrow M$ [7], [8].

We shall denote by $\mathscr{L}^{k}(M)$ the C-module of pointwise smooth k -forms (see[2]). Every element $\theta$ of $\mathcal{L}^{\mathrm{k}}(\mathrm{M})$ is a smooth mapping $\theta: T M \oplus \ldots \oplus T M \longrightarrow R$ such that the restriction $\theta \mid T_{p} M \times \ldots \times T_{p} M$ is a $k$-linear form for each $p \in M$.

A sequence $W_{1}, \ldots, W_{n} \in \mathscr{F}(M)$ is said to be a vector basis of the C-module $\mathfrak{X}(M)$ if for every point $p \in M$ the sequence $W_{1}(p)$, $\ldots, W_{n}(p)$ is a basis of $T_{p} M$. We say that the differential space ( $M, C$ ) is of constant differential dimension $n$ if every point $p \in M$ has a neighbourhood $U \in \tau_{C}$ such that there is a vector basis of $\not \mathscr{( U )}$ composed of $n$ vector fields. A point $p$ of ( $M, C$ ) is called regular if there exists a neighbourhood $v \in \tau_{C}$ of $p$ such that the differential subspace ( $V, C_{V}$ ) is of constant differential dimension. A point $p \in M$ is called singular if $p$
is not regular.
Now, let $\rho$ be an equivalence relation on ( $M, C$ ) [4]. A function $f \in C$ is said to be consistent with $\rho$ if $x \rho y$ implies $f(x)=f(y)$ for any $x, y \in M$. We denote by $C_{\rho}$ the set of all $f \in C$ consistent with $\rho$. One can easily show that $C$ is a differential structure on $M$. Let $M / \rho$ denote the set of all equivalence classes of $\rho$ and let $\pi_{\rho}: M \longrightarrow M / \rho$. be the canonical mapping. We denote by $\mathrm{C} / \rho:=\left(\pi_{\rho}^{*}\right)^{-1}(\mathrm{c})$ the differential structure on $\mathrm{M} / \rho$ coinduced on $M / S$ by the mapping $\pi_{\rho}[11],[4]$. It is easy to show that $\pi_{\rho}^{*} \mid(C / \rho): C / \rho \longrightarrow C_{\rho}$ is an isomorphism of algebras. A subset $A \subset M$ is called $\rho$-saturated if $\pi_{\rho}^{-1}\left(\pi_{\rho}(A)\right)=A$. Let us observe that the mapping $M / \rho \supset A \xrightarrow{I} \pi_{\rho}^{-1}(A) C M$ is a bijection between the family of $\rho$-saturated sets in $M$ and the family of all subsets of $\mathrm{M} / \rho$. Let us put $\pi_{\rho}:=\left\{U \in \tau_{C}: U=\pi_{\rho}^{-1}\left(\pi_{\rho}(U)\right)\right\}$. It is easy to see that $\mu_{\rho}=I\left(\tau_{\mathrm{C}} / \rho\right)$, where $\tau_{\mathrm{C}} / \rho$ is the quotient topology in the set $M / \rho$ and $\tau_{C_{\rho}}=I\left(\tau_{C / \rho}\right)$, where $\tau_{\mathrm{C} / \rho}$ is the weakest topology on $\mathrm{M} / \rho$ such that all functions belonging to $\mathrm{C} / \rho$ are continuous. We have $\tau_{\mathrm{C}} / \rho=\tau_{\mathrm{C} / \rho}$ if and only if $\pi_{\rho}=\tau_{C_{\rho}}$. Moreover, $\gamma r_{\rho}=\tau_{C_{\rho}}$ iff for any $U \in r_{\rho}$ and for any $p \in U$ there is a function $\varphi \in C_{\rho}$ such that $\varphi(p)=1$ and $\varphi \mid M-U=0$.
2. MAIN RESULTS. Let $\left(M_{i}, C_{i}\right)$, $i=1, \ldots, k$, be differential spaces and let $p_{i} \in M_{i}, i=1, \ldots, k$, be arbitrary points. Let $(N, D)=\left(\bigcup_{i=1}^{k} M_{i}, \bigsqcup_{i=1}^{k} C_{i}\right)$ be the disjoint union [10]. By definition $f \in D$ iff $f\left(M_{i} \in C_{i}\right.$ for $i=1, \ldots, k$. For a family $f_{i} \in C_{i}, i=1, \ldots, k$, we denote by $f_{1} \amalg \ldots \sqcup f_{k}$ the real function on $N$ such that $\left(f_{1} 山 \ldots U f_{k}\right) \mid M_{i}=f_{i}$ for $i=1, \ldots, k$.

Let $\rho$ be the equivalence relation on ( $N, D$ ) identifying the points $p_{1}, \ldots, p_{k}$. We denote by $p_{*}$ the equivalence class containing the points $p_{1}, \ldots, p_{k}$. Of course equivalence classes different from $p_{*}$ are one-element.

The quotient space ( $\mathrm{N} / \rho, \mathrm{D} / \rho$ ) is called the wedge sum of the differential spaces $\left(M_{1}, C_{1}\right), \ldots,\left(M_{k}, C_{k}\right)$ and it will be denoted by $\left(M_{1} \vee \ldots \vee M_{k}, C_{1} \vee \ldots \vee C_{k}\right)$. It can be seen that $D_{\rho}=\left\{f \in D: f \mid\left\{p_{1}, \ldots, p_{k}\right\}=\right.$ const $\}$.

LEMMA 1．$\quad \tau_{D} / \rho=\tau_{D / \rho} \cdot$
Proof．Let $U \in \gamma_{\rho}$ ．It suffices to show that for any point $p \in U$ there exists a function $\varphi \in D_{\rho}$ such that
（1）$\quad \varphi(p)=1$ and $\varphi(q)=0$ for $q \in U$ ．
Assume that $p \in\left\{p_{1}, \ldots, p_{k}\right\}$ ．For any $i \in\{1, \ldots, k\}$ ，there exists a function $f_{i} \in C_{i}$ such that $f_{i}\left(p_{i}\right)=1$ and $f_{i} \mid M_{i}-\left(U \cap M_{i}\right)=$ $=0$（see［8］for instance）．It is evident that the function $\varphi=f_{1} 山 \ldots 山 f_{k}$ is consistent with $\rho$ and satisfies（1）．

Now let $p \notin\left\{p_{1}, \ldots, p_{k}\right\}$ and let $p \in U \cap M_{j}$ for some $j \in\{1, \ldots, k\}$ ． There exists a function $g \in C_{j}$ such that $g(p)=1, g\left(p_{j}\right)=0$ and $\mathrm{g} \mid \mathrm{M}_{\mathrm{j}}-\left(\mathrm{Un}_{\mathrm{j}}\right)=0$ ．Let $\varphi: N \longrightarrow R$ be given by （2）

$$
\varphi \mid M_{j}=g \text { and } \varphi \mid M_{i}=0 \text { for } i \notin j, i \in\{1, \ldots, k\} \text {. It is }
$$ clear that $\varphi \in D_{\rho}$ and $\varphi$ satisfies（1）．This finishes the proof．

Now for $j \in\{1, \ldots, k\}$ and $f \in C_{j}$ let $\widetilde{f}: N \longrightarrow R$ be the function defined by

$$
\tilde{f}(q)= \begin{cases}f(q) & \text { for } q \in M_{j},  \tag{3}\\ f\left(p_{j}\right) & \text { for } q \notin M_{j},\end{cases}
$$

Of course $\tilde{f}$ is consistent with $\rho$ ．Let $\hat{f} \in D / \rho$ be the function corresponding to $\widetilde{f}$ by the isomorphism $\pi_{\rho}^{*} I(D / \rho): D / \rho \rightarrow D_{\rho} \cdot$ $\hat{\mathrm{f}}$ satisfies the condition

## （4） <br> $$
\tilde{f}=\hat{f} \circ \pi_{\rho} .
$$ <br> Now one can prove

PROPOSITION 2．Let $\left(M_{i}, C_{i}\right)$ be a differential space generated by a set $C_{i}^{0}, i=1, \ldots, k$ ．Then the wedge sum $\left(M_{1} \vee \ldots \vee M_{k}, C_{1} \vee \ldots \vee C_{k}\right)$ is generated by the set $\bigcup_{i=1}^{k}\left\{\hat{f}: f \in C_{i}^{0}\right\}$ ．

Proof．Let $f \in D / \rho$ be an arbitrary function．It suffices to show that $f$ smoothly depends on a finite number of functions from the set $\bigcup_{i=1}^{k}\left\{\hat{f}: f \in C_{i}^{\circ}\right\}$ ，in a neighbourhood of $p_{*}$ ．

For $i \in\{1, \ldots, k\}$ let $U_{i} \in \tau_{C_{i}}$ be an open neighbourhood of $p_{i}$ such that there exist functions $f_{1}^{i}, \ldots, f_{n}^{i} \in C_{i}^{0}, \theta^{i} \in \mathcal{E}_{n}$ satisfying

$$
f \circ \pi_{\rho}\left|U_{i}=\theta^{i_{\bullet}}\left(f_{1}^{i}, \ldots, f_{n}^{i}\right)\right| U_{i}
$$

Clearly the set $U:=\pi_{\rho}^{-1}\left(\bigcup_{i=1}^{k} U_{i}\right)$ is an open neighbourhood of $p_{*}$ ．

It is easily seen that
$f\left|U=\left(\sum_{i=1}^{k} \theta^{i} \circ\left(\hat{f}_{1}^{i}, \ldots, \hat{f}_{n}^{i}\right)-\sum_{i=1}^{k-1} \theta^{i}\left(f_{1}^{i}\left(p_{i}\right), \ldots, f_{n}^{i}\left(p_{i}\right)\right)\right)\right| U$.
From Proposition 2 we deduce
COROLLARY 3. If $\left(M_{i}, C_{i}\right)$, $i=1, \ldots, k$, are differential spaces locally finitely generated [3], then $\left(M_{1} \vee \ldots \vee M_{k}, C_{1} \vee \ldots \vee C_{k}\right)$ is locally finitely generated. PROPOSITION 4. For $i \in\{1, \ldots, k\}$ the restriction $\pi_{\rho} / M_{i}$ is a diffeomorphism onto its image and

$$
T_{p_{*}}(N / \rho)=\bigoplus_{i=1}^{k}\left(\pi T_{\rho} \mid M_{i}\right)_{* p_{i}} T_{p_{i}} M_{i}
$$

Proof. It is clear that $\pi_{\rho} \mid M_{i}$ is bijective for $i \in\{1, \ldots, k\}$. Let $\psi_{i}: \pi_{\rho}\left(M_{i}\right) \longrightarrow M_{i}$ be the inverse of $\pi_{\rho} / M_{i}$ for $i=1, \ldots, k$. It is easy to see that

$$
f \circ \psi_{i}=\hat{f} \mid \pi_{\rho}\left(M_{i}\right) \text { for any } f \in C_{i}, i=1, \ldots, k
$$

So $\psi_{i}$ is smooth for $i=1, \ldots, k$.
Now let $w \in T_{p_{*}}(N / \rho)$ be an arbitrary vector. For $i \in\{1, \ldots, k\}$ let $\mathrm{v}_{\mathrm{i}}: \mathrm{C}_{i} \longrightarrow \mathrm{R}$ be the mapping defined by
(5) $\quad v_{i}(\alpha):=w(\hat{\alpha}) \quad$ for $\alpha \in C_{i}$.

It is easy to verify that $v_{i} \in T_{p_{i}} M_{i}$ for $i=1, \ldots, k$.
One can check that every function $g \in D / \rho$ can be represented as a sum
(6) $\quad g=\sum_{i=1}^{k} \widehat{g o\left(\pi_{\rho}\left(M_{i}\right)\right.}-(k-1) g\left(p_{*}\right)$, where $\widehat{g \circ\left(\pi_{\rho} \mid M_{i}\right)}$ is the function defined by (4).

From (5) and (6) it follows that

$$
w(g)=\sum_{i=1}^{k} v_{i}\left(g \cdot\left(\pi_{\rho} \mid M_{i}\right)\right)=\sum_{i=1}^{k}\left[\left(\pi_{\rho} \mid M_{i}\right)_{* p_{i}} v_{i}\right](g)
$$

for any $g \in D / \rho$. Hence

$$
\begin{equation*}
w=\sum_{i=1}^{k}\left(\pi_{\rho} \mid M_{i}\right)_{* p_{i}} v_{i} \tag{7}
\end{equation*}
$$

It remains to show the uniqueness of the decomposition (7).
Note that for any $v \in T_{p_{i}} M_{i}$ and $\beta \in C_{j}$, $i, j \in\{1, \ldots, k\}$, if i $\neq j$, then

$$
\begin{equation*}
\left[\left(\pi \rho \mid M_{i}\right)_{* p_{i}} v\right](\hat{\beta})=0 \tag{8}
\end{equation*}
$$

Let $\left(u_{1}, \ldots, u_{k}\right) \in T_{p_{1}} M_{1} \times \ldots \times T_{p_{k}} M_{k}$ be a sequence of vectors such that
(9) $\quad w=\sum_{i=1}^{k}\left(\pi_{\rho} \mid M_{i}\right)_{*_{p}} u_{i}$.

Now from (7)-(9) it follows that
$w(\hat{\beta})=u_{j}(\beta)=v_{j}(\beta) \quad$ for any $\beta \in C_{j}, j=1, \ldots, k$.
Hence $u_{j}=v_{j}$ for $j=1, \ldots, k$.
In the sequel we denote by $\rho_{i}: T_{p_{*}}(N / \rho) \longrightarrow T_{p_{i}} M_{i}, i=1, \ldots, k$, the projection defined by
(10) $\quad \rho_{i}(w)=v_{i}$ for $w \in T_{p_{*}}(N / \rho)$,
where $v_{i} \in T_{p_{i}} M_{i}$ is defined by ( ${ }^{p_{*}}$ ).
LEMMA 5. For any $X \in \mathscr{X}(\mathrm{~N} / \varsigma)$ there exists a unique sequence $\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{k}}\right) \in \mathfrak{X}\left(\mathrm{M}_{1}\right) \times \ldots \times \nsupseteq\left(M_{k}\right)$ such that
(11) $\quad X(q)=\left(\pi \rho \mid M_{i}\right)_{* \psi_{i}(q)} X_{i}\left(\psi_{i}(q)\right)$ for $q \in \pi_{\rho}\left(M_{i}\right)-p_{*}, i=1, \ldots, k$,

$$
\begin{equation*}
X\left(p_{*}\right)=\sum_{i=1}^{k}\left(\pi_{\rho} / M_{i}\right)_{* p_{i}} X_{i}\left(p_{i}\right) . \tag{12}
\end{equation*}
$$

Proof. For $i \in\{1, \ldots, k\}$ let $X_{i} \in \mathscr{X}\left(M_{i}\right)$ be the vector field defined by
(13) $\quad X_{i}(\alpha)=X(\hat{\alpha}) \circ\left(\pi_{\rho} \mid M_{i}\right)$ for $\alpha \in C_{i}$,
where $\hat{\alpha}$ is the function defined by (4).
It can be seen that $X_{1}, \ldots, X_{k}$ satisfy (11) and (12). The uniqueness of the sequence $X_{1}, \ldots, X_{k}$ is a consequence of the uniqueness of the decomposition (7).
COROLLARY 6. If $p_{i}$ is not an isolated point in $\left(M_{i}, \tau_{C_{i}}\right)$ for $i=1, \ldots, k$, then $X\left(p_{*}\right)=0$ for every $X \in \mathcal{X}(N / \rho)$.

Proof. Let $\left(X_{1}, \ldots, X_{k}\right) \in \nVdash\left(M_{1}\right) \times \ldots \times \nVdash\left(M_{k}\right)$ be the unique sequence satisfying (11) and (12). We will show that $X_{i}\left(p_{i}\right)=0$ for $i=1, \ldots, k$.

Fix $i \in\{1, \ldots, k\}$. From (11) it follows that
$X(\hat{\alpha}) \cdot \pi_{\rho} \mid M_{j}-\left\{p_{j}\right\}=0$ for $\alpha \in C_{i}, j \neq i, j \in\{1, \ldots, k\}$. Since $p_{j}$ is not isolated in $\left(M_{i}, \tau_{C_{i}}\right), X(\hat{\alpha}) \cdot \pi_{\rho} \mid M_{j}=0$ for $j \in\{1, \ldots, k\}, j \neq i$. Of course $X(\hat{\alpha}) \circ \pi_{\rho} \in D_{\rho}$. Thus $X(\hat{\alpha}) \circ \pi_{\rho}\left(p_{i}\right)=0$
and, by ( 8 ), $X_{i}\left(p_{i}\right)(\alpha)=0$. We have thus proved that $X_{i}\left(p_{i}\right)=0$ for $i=1, \ldots, k$. Hence (12) gives $X\left(p_{*}\right)=0$.
REMARK 7. From Lemma 5 and Corollary 6 it follows that if $p_{i}$ is not isolated in $\left(M_{i}, \tau_{C_{i}}\right)$ for $i=1, \ldots, k$, then the $D / \rho-m o-$ dule $\mathfrak{X}(\mathrm{N} / \rho)$ is isomorphic to the $\mathrm{D} / \rho$ - module $\mathfrak{X}_{0}\left(\mathrm{M}_{1}, \ldots, \mathrm{M}_{\mathrm{k}}\right):=$ $\left\{\left(x_{1}, \ldots, x_{k}\right) \in \mathscr{X}\left(M_{1}\right) \times \ldots \times \notin\left(M_{k}\right): X_{i}\left(p_{i}\right)=0\right.$ for $\left.i=1, \ldots, k\right\}$.
In the sequel the vector field. $X \in X(N / \rho)$ corresponding to a sequence $\left(X_{1}, \ldots, X_{k}\right) \in X_{0}\left(M_{1}, \ldots, M_{k}\right)$ will be denoted by $X_{1} * \ldots * X_{k}$. Clearly, for any sequence ( $f_{1}, \ldots, f_{k}$ ) $\in C_{1} \times \ldots \times C_{k}$ such that $f_{1}\left(p_{1}\right)=\ldots=f_{k}\left(p_{k}\right)$ there exists a unique function $f_{1}{ }^{*} \ldots f_{n} \in$ D/ $\rho$ satisfying the condition
(14) $\quad\left(f_{1} * \ldots * f_{n}\right) \circ\left(\pi \rho \mid M_{i}\right)=f_{i} \quad$ for $i=1, \ldots, k$.

It is easy to verify that the mapping $\Psi:\left\{\left(f_{1}, \ldots, f_{k}\right) \in C_{1} \times \ldots \times C_{k}\right.$ : $\left.f_{1}\left(p_{1}\right)=\ldots=f_{k}\left(p_{k}\right)\right\} \longrightarrow D / \zeta, \Psi\left(f_{1}, \ldots, f_{k}\right)=f_{1}{ }^{*} \ldots * f_{k}$, is an isomorphism of linear rings over R .

The following equalities hold:
(15) $f_{1} * \ldots * f_{k} X_{1} * \ldots * X_{k}=f_{1} X_{1} * \ldots * f_{k} X_{k}$,
(16) $\left(X_{1} * \ldots * X_{k}\right)\left(f_{1} * \ldots * f_{k}\right)=X_{1} f_{1} * \ldots * X_{k} f_{k}$,
(17) $X_{1} * \ldots * X_{k}+Y_{1} * \ldots * Y_{k}=\left(X_{1}+Y_{1}\right) * \ldots *\left(X_{k}+Y_{k}\right)$,
(18) $\left[X_{1} * \ldots * X_{k}, Y_{1} * \ldots * Y_{k}\right]=\left[X_{1}, Y_{1}\right] * \ldots *\left[X_{k}, Y_{k}\right]$,
for any $\left(X_{1}, \ldots, X_{k}\right),\left(Y_{1}, \ldots, Y_{k}\right) \in X_{0}\left(M_{1}, \ldots, M_{k}\right)$ and $\left(f_{1}, \ldots, f_{k}\right) \in$ $C_{1} \times \ldots \times C_{k}$ such that $f_{1}\left(p_{1}\right)=\ldots=f_{k}\left(p_{k}\right)$.

Now we can prove
PROPOSITION 8. Let $p_{i}$ be a regular and non-isolated point in $\left(M_{i}, C_{i}\right)$ for $i=1, \ldots, k$. If $\stackrel{i}{\nabla}$ is a covariant derivative [6] in the $C_{i}$-module $\mathfrak{X}\left(M_{i}\right)$, $i=1, \ldots, k$, then the mapping $\nabla: \mathfrak{X}(\mathrm{N} / \mathrm{\rho}) \times \mathfrak{X}(\mathrm{N} / \rho) \longrightarrow \mathfrak{X}(\mathrm{N} / \rho)$ defined by (19) $\nabla_{X_{1} * \ldots * X_{k}} Y_{1} * \ldots * Y_{k}=\hat{\nabla}_{X_{1}} Y_{1} * \ldots * \nabla^{k} X_{k}{ }_{Y_{k}}$ for any $\left(X_{1}, \ldots, X_{k}\right),\left(Y_{1}, \ldots, Y_{k}\right) \in \mathscr{X}_{0}\left(M_{1}, \ldots, M_{k}\right)$, is a covariant derivative in the $D / \rho$-module $\mathfrak{f}(\mathrm{N} / \rho)$. Moreover, if $\mathrm{R}_{1}, \ldots, \mathrm{R}_{k}$ is the curvature tensor of $\hat{\nabla}, \ldots, \stackrel{k}{\nabla}$ respectively and $T_{1}, \ldots, T_{k}$ are the respective torsion tensors, then the curvature tensor $R$ and the torsion tensor $T$ of $\nabla$ satisfy:

$$
\begin{align*}
& R\left(X_{1} * \ldots * X_{k}, Y_{1} * \ldots * Y_{k}\right) Z_{1}^{*} \ldots A_{k}^{*}=R_{1}\left(X_{1}, Y_{1}\right) Z_{1}{ }^{*} \ldots R_{k}\left(X_{k}, Y_{k}\right) Z_{k}  \tag{20}\\
& T\left(X_{1} * \ldots * X_{k}, Y_{1}^{*} \ldots * Y_{k}\right)=T_{1}\left(X_{1}, Y_{1}\right) * \ldots * T_{k}\left(X_{k}, Y_{k}\right) \tag{21}
\end{align*}
$$

for any $\left(X_{1}, \ldots, X_{k}\right),\left(Y_{1}, \ldots, Y_{k}\right),\left(z_{1}, \ldots, Z_{k}\right) \in X_{0}\left(M_{1}, \ldots, M_{k}\right)$.
Proof. Since $p_{i}$ is a regular point in $\left(M_{i}, C_{i}\right)$ and $X_{i}\left(p_{i}\right)=0$ for $i=1, \ldots, k,\left(\dot{i}_{X_{i}} Y_{i}\right)\left(p_{i}\right)=V_{X_{i}}\left(p_{i}\right)_{i}=0$ for $i=1, \ldots, k$. Thus $\left(\hat{\nabla}_{X_{1}} Y_{1}, \ldots, \nabla_{X_{k}} Y_{k}\right) \in \mathscr{H}_{o}\left(M_{1}, \ldots, M_{k}\right)$ and $\nabla$ is well defined. Using the formulas (15)-(17). it is easy to verify that $V^{\top}$ is a covariant derivative in the $D / \rho$-module $\mathcal{X}(\mathrm{N} / \mathrm{y})$. The proof of (20) and (21) is straightforward.
COROLLARY 9. If ( $M_{i}, C_{i}$ ) for $i \in\{1, \ldots, k\}$, is a $C^{\infty}$ - manifold, then on the wedge sum $\left(M_{1} \vee \ldots \vee M_{k}, C_{1} \vee \ldots \vee C_{k}\right)$ there exists a covariant derivative.

For any sequence $\left.\left(\omega_{1}, \ldots, \omega_{k}\right) \in \mathscr{L}^{r}\left(M_{1}\right) \times \ldots \times \Psi^{r}, M_{k}\right)$ of smooth pointwise $r$-forms let $\omega: T(N / f) 屯 \ldots(N / \mathcal{N}) \longrightarrow R$ be the r-form defined by
(22) $\omega\left(w_{1}, \ldots, w_{r}\right):=$

$$
= \begin{cases}\sum_{i=1}^{k} \omega_{i}\left(f_{i}\left(w_{i}\right)\right) & \text { if } \pi^{r}\left(w_{1}, \ldots, w_{r}\right)=p_{*}, \\ \omega_{i}\left(\left(\psi_{i}\right)_{*} w_{1}, \ldots,\left(\psi_{i}\right)_{*} w_{r}\right) & \text { if } \pi^{r}\left(w_{1}, \ldots, w_{r}\right)=\operatorname{lig}_{\rho}\left(M_{i}\right)-\left\{p_{*}\right\}, \\ i & =1, \ldots, k,\end{cases}
$$

where $\pi^{r}: T(N / \rho) \oplus \ldots \oplus T(N / \rho) \longrightarrow N / \rho$ is the canonical projection, $\rho_{i}$ is defined by (10) and $\psi_{i}$ is the inverse of $\pi_{i} / M_{i}$ for $i=1, \ldots, k$.

One can verify that $\omega$ is a smooth $r$-form on ( $N / 5, D / 3$ ). It is enough to prove the smoothness of $\omega$ in a neighbourhood of the point $p_{*}$. For $i \in\{1, \ldots, k\}$ let $U_{i}$ be a neighoourhood of $p_{i}$ such that there exist smooth functions $f_{1}^{i}, \ldots, f_{n}^{i} \in C_{i}, \epsilon_{i} \in \mathcal{E}_{2 n}$ satisfying

$$
\begin{equation*}
\omega_{i}\left|\pi_{i}^{-1}\left(U_{i}\right)=\theta_{i} \circ\left(d f_{1}^{i}, \ldots, d f_{n}^{i}, f_{1}^{i} \circ \pi_{i}, \ldots, f_{n}^{i} \circ \circ l_{i}^{-}\right)\right| \pi_{i}^{-1}\left(U_{i}\right), \tag{23}
\end{equation*}
$$

for $\mathrm{i}=1, \ldots, \mathrm{k}$.
From (22) and (23) it follows that
(24) $\omega \mid U=\sum_{i=1}^{k} \theta_{i} \circ\left(d \hat{f}_{1}^{i}, \ldots, d \hat{f}_{n}^{i}, \hat{f}_{1}^{i} \circ \pi, \ldots, \hat{f}_{n}^{i} \circ \pi\right) / U$,
where $U:=\pi_{\rho}^{-1}\left(\bigcup_{i=1}^{k} U_{i}\right), \pi: T(N / \zeta) \longrightarrow N / \rho$ is the canonical projection.

In the sequel the r-form corresponding to $\left(\omega_{1}, \ldots, \omega_{k}\right)$ by means of (22) will be denoted by $\omega_{1} * \ldots * \omega_{k}$.

Now one can prove
PROPOSITION 10. If $g_{i}$ is a riemannian metric on $\left(M_{i}, C_{i}\right)$ for $i=1, \ldots, k$, then $g_{1} \ldots \ldots * g_{k}$ is a riemannian metric on the wedge sum $\left(M_{1} \vee \ldots v M_{k}, C_{1} \vee \ldots v C_{k}\right)$. Moreover, if ${ }^{\prime}\left(M_{i f}, C_{i}\right)$ is of constant differential dimension for $i=1, \ldots, k, \stackrel{F}{\nabla}$ is the Levi-Civita connection corresponding to $g_{i}[8]$, then the torsion tensor $T$ of the connection $\nabla$ corresponding to $\stackrel{1}{1}^{1}, \ldots, \nabla^{k}$ by (19) is equal to 0 .

Proof is straightforward.
EXAMPLE. Let $M_{i}=\{(t, i): t \in R\} \subset R^{2}, i=1,2$, be equipped with the standard differential structures $C_{1}$ and $C_{2}$ generated by $\left\{\tau_{1}\right\}$ and $\left\{\tau_{2}\right\}$ respectively, where $\tau_{i}: M_{i} \longrightarrow R$ is defined by $\tau_{i}(t, i)=t$ for $t \in R, i=1,2$.
Let us take the point $p_{1}=(0,1)$ and $p_{2}=(0,2)$. It can be proved that the wedge sum $\left(M_{1} \vee M_{2}, C_{1} \vee C_{2}\right)$ is diffeomorphic to the differential subspace $\left.i M, \varepsilon_{2 M}\right)$ of $\left(R^{2}, \varepsilon_{2}\right)$, where $M:=\left\{(x, y) \in R^{2}: x y=0\right\}$. One can verify that the mapping $j: M_{1} \vee M_{2} \longrightarrow M$ given by

$$
\begin{array}{ll}
J([t, 1])=(t, 0) & \text { for } t \in R, \\
J^{\prime}([t, 2])=(0, t) & \text { for } t \in R, \tag{25}
\end{array}
$$

is a diffeomorphism. One can see that the $C_{1} \vee C_{2}$-module $\mathfrak{X}\left(M_{1} \vee M_{2}\right)$ is free with the basis $\left\{v_{1}, v_{2}\right\}$, where $v_{1}=\tau_{1} * 0 \cdot \frac{d}{d \tau_{1}} * 0$, $v_{2}=0 * \tau_{2} \cdot 0 * \frac{d}{d \tau_{2}}$.

## REFERENCES

1. HELLER M., MULTARZYNSKI P. and SASIN W. "The algebraic approach to space-time geometry", Acta Cosmologica 16 (1989), 53-85.
2. SASIN W. "On some exterior algebra of differential forms
over a differential space", Dem. Math. 19 (1986), 1063-1075.
3. SASIN W. and ŻEKANOWSKI Z. "On locally finitely generated differential spaces", Dem. Math. 20 (1987), 477-487.
4. SASIN W. "On equivalence relations on a differential space", CMUC 29, 3 (1988), 529-539.
5. SASIN W. "On locally countably generated differential spaces", Dem. Math. 21 (1988), 895-912.
6. SIKORSKI R. "Abstract covariant derivative", Coll. Math. 18 (1967) , 251-272.
7. SIKORSKI R. "Differential modules", Coll. Math. 24 (1971), 45-79.
8. SIKORSKI R. " Introduction to differential geometry" (in Polish), PWN Warszawa 1972.
9. SPALLEK K. "Differenzierbare Räume", Math. Ann. 180 (1969), 269-296.
10. SWITZER R.M. "Algebraic topology, homotopy and homology, Springer-Verlag, Berlin-Heidelberg-New York 1975.
11. WALCZAK P.G. and WALISZEWSKI W. "Exercises in differential geometry" (in Polish) , PWN Warszawa 1981.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF NARSAW, PL. JEDNOŚCI ROBOTNICZEJ 1, 00-661 WARSZAWA, POLAND.

