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THE WEDGE SUM OF DIFFERENTIAL SPACES 

Wiesław Sasin 

ABSTRACT. In this paper we study some geometric properties 

of the wedge sum [10] of differential spaces in the sense of 

Sikorski [7],[8j. In Section 1 we review some of the standard 

facts on Sikorski*s differential spaces. In Section 2 we de

scribe some basic notions and facts concerning the singularity 

which is obtained by taking the wedge sum of differential 

spaces. 

1. PRELIMINARIES. Let M be any set and let C be any non

empty set of real functions on M. By TQ we shall denote the 

weakest topology on M in which all functions from C are con

tinuous. For any subset ACM, let C^ be the set of all real 

functions ft on A such that, for any p6A, there exist an open 

neighbourhood Uefc of p and a function oteC such that 

p>|AnU »o(.|Ar.U. By scC we shall denote the family of all real 

functions on M of the form c o * ^ ,..., oi^)eC9 where co € ?n, 

o£1f...,<*n€Cf n£N, and gn -- C°°(R
n). 

A set C of real functions on M is called a differential 

structure on M if C - C M - scC [8]. The pair (MfC) is said to 

be a differential space; the family C is then a linear ring[8] 

and its elements are called smooth functions on M. For a- set 

C of real functions on M, the set (scCQ)M is the smallest 

differential structure on M containing CQ. A differential 

space (M,C) is said to be generated by CQ if C • (
scC

0^M
# 

This paper is in final form and no version of it will be 
submitted for publication elsewhere. 
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If (M,c) is a differential space and A is a subset of M, 

then (A-C^ is also a differential space, which is called the 

differential subspace of (M,c). By a tangent vector to (M,c) 

at a point peM we shall mean any linear mapping v: C —;> R 

which satisfies the condition 

v(ot-J3^ » v(oO-pcp> + o<(p>vC(-0 for <*,j*6c. 

By T M we shall denote the linear space of all tangent vectors 

to (M,C) at p£M, called the tangent space to (M,C) at p£M. 

Let (M,C) and (N,D) be differential spaces. A mapping 

f: M — > N is said to be smooth if f *(bO : - oL°fe.C for every 

o£6D. A mapping f: M — > N is said to be a dif feomorphism of 

(M,C) onto (N,D) if f is a smooth bisection and f"* is smooth. 

If f: M > N is smooth and v£T M, then the formula 

(f v ) (o l : ) «vCo(.«f) forod€D, 

defines a vector f v tangent to (N,D) at f(p). 

Let TM:« ( T M be the disjoint union of tangent spaces 
plM P 

to (M,C) and let TV: TM — > M be the canonical projection. We 

denote by TC the differential structure on TM generated by the 

set |od«7T :oLec\v \doi loLec}, where dU : TM » R is given by 

(doO(v) - v(oO for vcTM. 

Let 3£(M) be the C-module of all smooth vector fields 

tangent to (MtC). Every vector field X63E(M) is a smooth 

section of jr : TM » M [7], [8]. 

We shall denote by of (M) the C-module of pointwise smooth 

k-forms (see[2]). Every element 0 of tJf (M) is a smooth map

ping 0 : TM$...©TM — * R such that the restriction 

01 T M X...XT M is a k-linear form for each p6M. 
p p ~ 
A sequence W1f...,W €3E(M> is said to be a vector basis of 

the C-module 3E(M) if for every point peM the sequence W..(p), 
•••» w n (

p ^ i s a b a s i s o f T r j M # We say t h a t the differential 
space (M,C) is of constant differential dimension n if every 
point p€M has a neighbourhood U€TC such that there is a vector 
basis of 3£(IP composed of n vector fields. A point p of (M,c) 
is called regular if there exists a neighbourhood V£TC of p 
such that the differential subspace (V,Cy) is of constant 
differential dimension. A point peM is called singular if p 



THE WEDGE SUM OP DIFFERENTIAL SPACES 225 

is not regular. 

Now, let £ be an equivalence relation on (M,C)[4]. A func

tion fee is said to be consistent with f if xfy implies 

f (x) - f (y) for any x,yeM. We denote "by C* the set of all fee 

consistent with p . One can easily show that C is a differen

tial structure on M. Let M/p denote the set of all equivalence 

classes of ̂  and let 7T̂  : M -—^ M/f be the canonical mapping. 

We denote by C/̂> :- (7r£T1(C) the differential structure on M/f 

coinduced on M/^ by the mapping 7^ [ll]f[4]. It is easy to 

show that 7r£|(C/£): C/P — > CP is an isomorphism of algebras. 

A subset ACM is called <? -saturated if 7T.T (7î (A>) • A. Let 

us observe that the mapping M/^OA — > 7T̂ " (A)C M is a bisec
tion between the family of p-saturated sets in M and the fami
ly of all subsets of M/̂ > . Let us put flfcj :- £ueT :U-7Tf V^U>)L 

It is easy to see that 'Mlq - I(TQ/^) , where Tp/f is the 

quotient topology in the set M/^ and T c • -^^C/V) 9 wliere 

Tp/ is the weakest topology on M/P sucn that all functions 

belonging to C/^ are continuous. We have Tc/f • ^n/P ^ an(* 

only if Hi-- Tc . Moreover, 'ftl* - T c iff for any VeirCl^ and 
for any peU there is a function ^fSC^ such that f̂tp)5" 1 and 

f |M - U - 0. ' 

2. MAIN RESULTS. Let (M^Cj) , i -- 1,...,k, be differential 

spaces and let p,£M. , i - 1,...,k, be arbitrary points. Let 

k k 
(N,D) - (U Mit U G i ) be the disjoint union [10J. By definiti 

f6D iff f\nfCL for i » 1,...,k. For a family f^^, i- 1,...,k, 

we denote by f1U...Llfk the real function on N such that 

(f1U...Ufk)|Mi - f. fori - 1,...,k. 

Let ? be the equivalence relation on (N,D) identifying 
the points P-j,...,Pk. We denote by p* the equivalence class 

containing the points p-,,...,Pk« Of course equivalence classes 

different from p* are one-element. 

The quotient space (N/^,D/^) is called the wedge sum of 

the differential spaces (M1,0^,...,(Mk,Ck) and it will be 

denoted by (M..V.. .vM-^CjV.. .vĈ ) . It can be seen that 

D^ - |f€D: fIJp1f...fpk| - const] . 

on 
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LEMMA 1. TD/f « \ i . 

Proof. Let UE'OTk. It suffices to show that for any point 

peU there exists a function *f€D* such that 

(D f(p) - 1 and f(q> - 0 for qeU. 

Assume that pe^p.^,..., pk$ . For any i€|l,...,k^, there 
exists a function f £ Ci such that f^CVj) - 1 and f.J M^CtfoM}. 

• 0 (see [8] for instance).. It is evident that the function 

*f - f>jU ...Ufk is consistent with P and satisfies (1). 

Now let p^p-j,...fpk$ and let p£Ur>M. for some j£il f ... fkj. 

There exists a function geC, such that g(p) = 1, g(p^) - 0 

and g^-fUnM,) - 0. Let T : N > R be given by 

(2) <f|M. . g and f|MjL - 0 for i / j, i£$1,...,kj. It is 

clear that fcLV and *f satisfies (1). This finishes the proof. 

Now for j€$1,...fk£ and f£C. let f: N » R be the function 

defined by 

Ѓ3> ffq) -

f(q) for qeM.., 

ffp
3
) for q̂ M... 

Of course f is consistent with P . Let fCB/e be the function 

corresponding to f by the isomorphism 7T~ | (D/<?): D/̂ > r> D̂ > . 

f satisfies the condition 

(4) f - f°7T
?
 . 

Now one can prove 

PROPOSITION 2.. Let ( M . , C . . ) b e a differential space generated 

by a set C°, i - 1,...,k. Then the wedge sura (M^.. .VM
k
, ̂ V.. .vC-̂ ) 

is generated by the set C_j if: f£C \ . 
i-1 x 

Proof. Let f£D/^ be an arbitrary function. It suffices to 

show that f smoothly depends on a finite number of functions 
k 

from the set V*J \f: f6C?tf in a neighbourhood of p*. 
i-1 x 

Eor i€^1f...fk$ let U,£T C be an open neighbourhood of p i 

such that there exist functions jxist functions f* ..fff; 6c?, 9L^B satisfying 

J± - e
lo(q fi>'v f **? I ud 

Clearly the se t U:- 7 T f Y U u < ) i s an °Pen neighbourhood of P* 
i -1 i y 
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It is easily seen that 

f iu ~(i ©Vf* %) - g e^VPi)--- f
n^))l1J-

From Proposition 2 we deduce 

COROLLARY 5. If C^.C^, i = 1,...fk, are differential spaces 

locally finitely generated [3], then (H^V.. .VMk,C.V.. .vCk) is 

locally finitely generated. 

PROPOSITION 4. For i£$1f...fk] the restriction "flyÎ  is a dif-

feomorphism onto its image and 

Proof. It is clear that 7T̂ ]Mi is bijective for i€^1f...fkj. 

Let ^.:7T^fM.)—>M. be the inverse of 7T̂ IMi for i - 1f...fk . 

It is easy to see that 

f «» î - f I -TT^MJ) for any f€Cif i - 1 k. 

So 4/i is smooth for i - 1,...fk. 

Now let wcT (N/f) be an arbitrary vector. For i€$1f...fk? 

let v.: Ci > R be the mapping defined by 
( 5 ) v ± (u) : - w (& ) for oL€Ci. 
It is easy to verify that v.eT M. for i • 1f...fk. 

l pi I 

One can check that every function ĝ D/p can be represented 

as a sum 

(6) g - ̂ g ^ V ^ i ) ~ <k-1)e'P«>t 
i-1 * x 

where g^OTflM.) is the function defined by (O . 

From (5) and (6.) it follows that 

wfg) -gv . (gor7T ? IMp) - g [ r 7 r ? i M i ^ P i
v i ] r g ) 

for any g€V/e • Hence 

n) w -g^ iUp/ i 
k 

/-rr. IM."\ 

*P± 

It remains to show the uniqueness of the decomposition (!)• 

Note that for any veT M± and 3 6C,f i, j£^l,... 9k}9 if i / 3, 

then 
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(8) [(^i\v.
v](?>)' °-

Let (u.,... ,u, )£T M1x. ..xT M, be a sequence of vectors such 
i K p>j i ^ k 

that 

C9) w - ^(TT^lM^^u,. 

Now from (7)-(9) it follows that 
w(£) «- u^c^) « Vjf j3) for any p€C.., j - 1,...,k. 

Hence u, * v. for j • 1,...,k. 
In the sequel we denote by p.: T (N/e) —.> T M., i-1,...,k, 

^ **- "i 
the projection defined by 
(10} ^>±(w> - VjL for w€Tp(N/f)f where v.£T M, is defined by (5). 

I p. I 
LEMMA 5. For any X63£(N/^) there exists a unique sequence 

(Xr...,Xk) 6 3C(M1)x...x3b(Mk) such that 

(11) X(q) -(^l M
i)^^ c q >

x
iC + iCq>) -for qe7Tf(M.)- p^ , i-1, ... ,k, 

02) X(pj - g^,Mi^PjL
Xi^P-

Proof. For ie£l,...,k] let Xi€3C(Mi') be the vector field 

defined by 

(13) X.(oO « X(cO<7r?|M.) forc^6Cif 

where oL is the function defined by C4). 
It can be seen that X1f...fXk satisfy (11) and (12). The 

uniqueness of the sequence X1,...fXk is a consequence of the 

uniqueness of the decomposition (7). 

COROLLARY 6. If p. is not an isolated point in (M., Tn ) for 

i « 1,...fk, then Xfp^) - 0 for every Xe3C(N/^). 

Proof, Let (fX1,...,Xk)€3£CM1)x....x3fCMk) be the unique 

sequence satisfying (11) and C12). We will show that XYp.)« 0 

for i « 1,...fk. 

Fix i£$1,...,k$. From (11) it follows that 

XO*)*71?.*^ - fp3| « 0 for oL€0i9 j / i, o C f 1 k]. 

Since p. is not isolated in (Mi$ TQ) 9 X (oC)« 7T̂ )M, » 0 for 

3 6$1f ••.fk̂ f 3 / i« Of course X (oC>°7T^€D^. Thus X^o/T^pp - 0 
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and, "by (8), X.fp.)0-O -• 0. We have thus proved that X. (p.) • 0 

for i » 1,...,k. Hence fl2) gives X(p.„) - 0. 

REMARK 7. From Lemma 5 and Corollary 6 it follows that if p. 

is not isolated in (M^ f c } for i » 1,...,k, then the D/̂  -mo

dule 36 fN/^) is isomorphic" to the D/P - module 3£0fM-i f... ,Mk) :» 

^(x1,...,Xk)£^(M1)x..#x3f(Mk): X.fp.) - 0 for i - 1f...fk]. 

In the sequel the vector field. X£3£fN/^) corresponding to a se

quence fX1,...,Xk)€ 3^^fM1,...,Mk) will be denoted by X1*...*Xk# 
Clearly, for any sequence ff 1,... ,fk)£C..x .. .*Ck such that 

f-jfP-i) ••••• fkfPk) there exists a unique function f ..*...*f 6 

D/V satisfying the condition 

(14) (f1*...*fn)
0C^IMi) - f± for i - 1f...fk. 

It is easy to verify that the mapping Y:^ff-j,...ff\XG]*»•»*ck
: 

^(P-,) - ••• » f
ktPk)^ —-»

DA> fYffr...,fk) - f^...-fk, is 

an isomorphism of linear rings over R. 

The following equalities hold: 

(15) f^...*fk X1*...*Xk - f1X1*...*fkXk, 

(16) fX1*...*X^ff1*...*fk)- X ^ * . . ^ ^ , 

(17) X1*...*Xk + Y1*...*Yk » fX1 + Y1)*...*fXk + Y^ f 
(18) [X1*...»XkfY1*...*Yk] - [V

Y1>---*fV Yk]' 

for any (X1, ... fXfe) , (Y1,..., \)e 'XQ( M1,... fMfc) and (f1f...ffp€ 

C1x#..xCk such that ^(P-j) -•••-
 f
kfPk)» 

Now we can prove 

PROPOSITION 8. Let p. be a regular and non-isolated point in 

(Mifci) f o r i - 1,...fk. If V is a covariant derivative [6] 

in the C.-module 3t(M.)f i - 1,...fkf then the mapping 

V : 3f fN/^) X 1 fN/?) > 1 (N/f) defined by 

09) ^ ^ rk - ^ x / 1 * — * \ Y k ' 

for any fX1 f ... f Xk) , fY1,... f Yk) £ 'X0(^ f • • • tMk) » is a covariant 

derivative in the D/^ -module 3-(N/?) . Moreover, if R ^ . . . , . ^ 

is the curvature tensor of \7f...,v respectively and T1f...fTk 

are the respective torsion tensors, then the curvature tensor 

R and the torsion tensor T of V satisfy: 

(20) R(xl*...*XkfY1*...*Yk)Z1*...*Zk - R1CX1,Y1)Z1*...*Rk(XkfYk)Zk 

(21) T(X1*...*XkfY1*...»Yk) « T 1^ vY 1)*--**V
Xk»V» 
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for any (X.,,... ,Xk) , (Y1,... ,Yk) , (z^ Z^^o^-i • • • • » V • 
Proof . Since p.̂  is a regular point in ̂ M-pCj) and X^'p/) - 0 

-"or i - 1 k, ( V x Yi)(pi> -S7x<p£L - 0 for i - 1,...,k. 

Thus (V x Y1t...fVx Yk)£ 3e ' 0 (M 1 , . . . ,M k ) and V is well defined. 
I K. 

Using the formulas (l5)-(l7).it is easy to verify that V is 

a covariant derivative in the D/^ -module 3t(N/y) . The proof 

of (20) and (21) is straightforward. 

COROLLARY 9. If ('iVL,̂ ) for ifc£l,...,kjf is a C
00 - manifold, 

then on the wedge sum (M.jV.. .VM. ,C..V.. .VCk) there exists a co-

variant derivative. 

For any sequence (' OX. f ... ,a) fc) 6 ̂
r. M^ \... * ̂ r < \ ) of 

smooth pointwise .r-forms let co : T(N/r")&.. .(pT̂ N/j) ^ R be 

the r-form defined by 

(22) Gi(wi»--«»w
r)

 :s 

S^ifc^iO if ^ r( wv-t w
r) " P*» 

<°i((*i)* Wr • • • ' W * Wr) i f nlTwi • • • • ' V * VMi} - I P.l • 
i - 1 , . . . , k f 

where TTr: T(N/f) e.. .#T(N/<?) — > N/^? is the canonical projection, 

e. is defined by (10) and *¥. is the inverse of IiyiM. for 

i « 1f...fk. 

One can verify that & is a smooth r-form on ̂  N/^jD/t). 

It is enough to prove the smoothness of 60 in a neighbourhood 

of the point p #. For i£^1,...fkj let IV be a neighbourhood of 
p. such that there exist smooth functions f1 ... f f^C f fc.^c? 

satisfying 

(23) cojTT-Vu.) « e.ofdf1,...^1,^ 

for i « 1,...fk. 

From (22) and (23) *•* follows that 

(24) «|U - JZ&^Cdf^ d̂ .f̂ -TT -*.7r)]U , 
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1/ k \ r 

where U: == "7TJ Y [̂J U.J , 7T : T(N/^) > N/^ is the canonical 

projection. 

In the sequel the r-form corresponding to QA+ ,..., <-o ,) by-

means of (22) will be denoted by <-0.,*.. .>co,. 

Now one can prove 

PROPOSITION 10, If g. is a riemannian metric on fM.,C.) for 

i -« 1,...,k, then g-j*...*gk is a riemannian metric on the 

wedge sum (M^ v.. .vM^jC^.. .vCk) . Moreover, if V'M C.) is of 

constant differential dimension for i • 1,...,"k, V is the 

Levi-Civita connection corresponding to g. f8j, then the tor

sion tensor T of the connection V corresponding to V,...fV 

by (19) is equal to 0. 

Proof is stra^htforward. 

EXAMPLE. Let M± --j(t,i): t6R?CR2, i - 1,2, be equipped with the 

standard differential structures C. and C2 generated by \^^X 

and }T2^ respectively, where T.: M. — » R is defined by 

T i (t,i) = t for t£R, i - 1,2. 

Let us take the point p. • (0,1) and p 2 -« (0,2). It can be 

proved that the wedge sum (M.jVM^C.jVC,,) is diffeomorphic to 

the differential subspace (M, 5 ™ ) of (R , £ 2 ) , where 

M:- ^'x,y)tR : xy = o£. One can verify that the mapping 

S": M vM2 5> M given by 

^(T"t,1J) - i/t.O) for ttR, 
c 2 3 ) i"([t, 2j) -- (0,t) for ttR, 

is a diffeomorphism. One can see that the C1v/C2-module^('M1vMp> 

is free with the basis ^V-|,V2^, where V^ - ^<i*°"£f~*°9 

V2 = ° * r 2 ° * i t 2 ' 
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