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DERIVED ALGEBRA OF THE
FROLICHER-NIJENHUIS BRACKET ALGEBRA

Jifi VanZura

All structures appearing in this note are of class C*®°. Let M be a connected
paracompact manifold, dimM = m. Let TM and T*M denote the tangent and
cotangent bundle of M respectively. We denote by A‘T*M the i-th exterior power of
T*M. We set

Li=T(A'T*M @ TM), i=0,1,...,m,

where I' denotes the functor of sections. To complete our notation we set

Li=0 fort<0and:>m,

t=—00

We recall that for every i, j € Z there is a bilinear mapping
[,]: Lix Lj = Lit;j

called the Frolicher-Nijenhuis bracket (see e.g. [1]). Endowed with this bracket L is a
graded Lie algebra. -Similarly we define the Frolicher-Nijenhuis bracket algebra with
compact supports L¢. Instead of the functor I' we use the functor I'° of sections with
compact supports. Obviously L¢ is an ideal in L. We are going to prove the following

theorem.

Theorem. For any i, j € Z satisfying 0 < ¢,7, 1 +j < m there is
[Li,L;) = Litj, (L, L§] = Liy.

First we shall need the following lemma.
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Lemma. On an m-dimensional paracompact manifold M there exist open coverings
{Uko}, {Vko}, k=0,1,...,m, 0 €T

with the following properties

(i) Uko C Vio for every k=0, 1,...,m and every o € [x.

(1) Vio N Vir =0 forevery k=0,1,...,mand o, T € s, 0 £ 7.

(iii) Each Vio is a domain of a chart (Vio,@ko) such that ore(Urs) = I™ C R™,
where I = (0,1). ’

For the proof of this lemma see [2].
Proof of the Theorem: We shall prove the theorem for the algebra L only. The
reader will easily find that the proof for the algebra L€ requires only minor modifica-

tions.
Let ¢, j € Z be such that 0 <3, j, i +j < m, and let @ € Li+; be arbitrary. We set

Ur =User Ukoy, k=0,1,...,m.

Because the covering {Ux}, k =0, 1,...,m is locally finite, we can find a partition of

unity {pr}, k=0, 1,...,m subordinate to this covering. We can write

m
a= Z pra.
k=0

Obviously it suffices to prove that for every k =0, 1,...,m there is pra € [Li, L;].
Let us assume that k is fixed. From now on we shall work in fact on each open

set Uro separately. For the sake of simplicity we shall often identify U, with

¢ko(Uke) = I™. Let (:cﬁ'“’),... ,:1:5,':0)) be the coordinates on Uk, determined by

the chart (Uko,@ks). On Urs we can write

m 0
_ o ko k —_—
pro = E E : f:;...r.'+,' dl‘(n ) AR dzs‘i:i) ® az(k") ’

1<r < <ri4j <m s=1

Because Uks C Vio, and (Vio,@ko) is a chart it is easy to see that supp“fy, ... C
Uto is compact. For every (i+j)-tuple1 <rj <--- < ritj <mandevery1<s<m

we can define 32, .., by the formula

' G

_ k
ﬁ:l...r.'u Ide = af:l...r;+j dIs.la) A---A d:c£f:’) ® 8x(ka)
8

ﬂ:l...r.-.“' I(M \ Uk) =0.
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We have
m

s
pka = Z ﬁ"lm"i+j’
1

1< < <Lri4j<m 8=

and therefore it suffices to prove that for every (z + j)-tuple 1 <ry < -+ <riy; <m

and every 1 < s <m thereis 8}, .. . € [Li,L;]. Now we shall divide the proof into
two parts.
(1) We shall assume here that s # r1,... ,rit;. We shall abbreviate 8 = 8;, ...,

°f = °f7\..riy;- In our considerations we shall use an auxiliary function x defined on
I = (0,1) which has the following properties
(1) suppy is compact

(i) x>0on [l

(iii) /X is a C*°-function on I

(v) fy x(t)dt =1.
We define 7y = x o pr® o i, where pr®: I™ — I denotes-the s-th projection. (In the
sequel we again identify Uke with @io(Uks) = I™.) We set

1

01,/)(551,...,:23,...,1,,;):/ f(z1,... ,xm)dzs

0
%G(z1y. . y2m) = Tx(zs) Y21, Eoye ooy Tm)
Ug = d'f — ﬂg‘
Obviously supp %9, supp ’§ C Uko are compact and
1
/ °9(z1,... ,Zm)dzs = 0.
0
Furthermore we define.
z,
°G(z1,... ,Zm) = / g(z1y-- 5ty Tm)dt.
. 0 .

°G is a C*-function on Uk, and the vanishing of the above integral implies that
supp °G C Uke is compact. We define an element 4 € L;+j by the formula

_ (ko) A ... (ko)
VNUko = °gdz, /" A+ ANdz, 70 ® 220

7I(M \ U) = 0.
Similarly we define 4 € Li+j. Because 8 = y+74 it will be sufficient to prove that both

9, % € [Li, Lj]. Before proceeding further we shall recall one formula for the Frolicher-
Nijenhuis bracket (see [1]). If w and w' are p-form and g-form on M respectively, and
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X, X' € Lg are vector fields, then

we®X,w@X'=wWAwW)®X, X'+ (WA Lxw')® X'~
(LxwAw) @ X + (1) ((dw A txw') @ X' + (txw A dw') ® X),

where £x denotes the Lie derivative and ¢x the inner product operator.
Let £ € L; be an element such that

— kD) A A g (ko)
\Uko —dx.,l YA Nde) @ PR

Further let 7 € L; be defined by the formula

NUko = °Gdz ) A - A dzF) @ _9

rig1 Titj 6x("°)
s

nl(M\Ux) = 0.

We shall now compute the bracket [¢,7]. At any point ¢ Ui we have

[E) 77]: =0= Yz

Further we compute [€,7] on Ug,. For the sake of simplicity we denote y, = xﬁ’:"),
Ty = zgk"). The above formula for the Frélicher-Nijenhuis bracket gives '

- 15}
[€,7|Uko = (dy2 A--- Adyi A ﬁ&( Gdyi+1 A -+ Adyi+;)) ® Fr

0
%9y A+ Adyi+j ® 53— =|Uko.
T s

We have thus proved that v = [¢,7] € [Li, Lj].
Further let A € L; be an element such that

0

087

MUk = v/ "xda:(,f”) Ao A dz(rf”) ®
We define p € L;j by the formula

o) o, 0
ILIU.’CU = msk ) ) /ﬂxdms_f:l) Ao A d:l:s.t:,) ® W
s

pl(M\Ui) = 0.

Considering [A, u] we find again that for every z ¢ Uk there is

M plz =0=7:.
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It remains to compute [, u]|Uks. We write again y, instead of :t(r:a), and z, instead
of xgk”). The formula for the Frolicher-Nijenhuis bracket gives

A u|Uko =
(Voxdyr A -+ Ndyi AL o (2 v/ TXdYiv1 A -+ A dyiyj)) ®

a —
Oz,
(£ 0. (Vxdys A+ Adyi)) Aws P/ xdyigr A== A dyi+;) ® 52’ -

6 7] o 7]
(VX YV x +Vxzs © \/_ \/_ s VX) - dyr A - Ndyir; ® 5 =

6 o= a9

oz, gdy1 A+ Ndyiv; ® 7— = F|Uko.

x dyr A - AN dyit; ® 3
Zs

We have thus proved that 4 = [, p] € [Li, L;]. Consequently 8 =~ + % € [Li, L;).
This finishes the first part of the proof.

(2) Here we shall assume that there exists ¢, 1 < ¢ <i+j such that s = ry. We shall

consider only the case 1 < ¢ <i. The case ¢ +1 < ¢ <1+ j can be treated similarly.

We shall abbreviate 8 = ﬂ::...r.'.'.," °f = af::...i'.’.',j- Let £ € L; be an element such
that

_ o (ko (ka) (ko
E|Uko —dz(r1 YA Adelh ® z;, )8 oy
Trq

Further let n € L;j be defined by the formula

B = —dali A N alED) 8 s

(ko)
n|(M\ Uk) = 0.

We shall compute the difference § — [£,7]. At any point z ¢ Uk we have

- [5:7]]2 =0.

Further we compute 8—[¢, 7] on Uko. For the sake of sxmphclty we denote y, = z(’“’)

)
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k
Tn = 257,

(B = [&nDIUke =
"fdyl/\~--/\dyi+‘®i—[dyl/\---/\dyi®y-6——dys+1/\~-/\dys+j®°fi]=
7 By, 10y, 9
0 o
”fdyll\‘--Ady.'+j®@;+dy1/\ /\dyt+1®[yqa fay]
17}
((Coppp (dyn Avw Ady) Adyiss A+ Ndyiss) @ Yoz =
F;) 6”f : 0 0
- Ay ® by oL A Adyin ® —— — “fdys A Adyip; ® ——
flyi A+ Ndyini® 5=+ g —dyi Ao Ay @ 5 - fdy, Viti® 5

0
yq((db,fas_q(dyl A--- /\dy.'))/\dyH.] A /\dy,'+j) ® a—yq- =

N 0
vits ayq

d
va((d°f Aepe_(dyr A--- Adys)) Adyisi A== A dyi+j) @ 5— =

a°’f
Yq 3yq

0 0
Y 5y, fdyl A---ANdyir; @ 3——

Oyq
a’f 0
yq((—dyq A Lbu_(dy1 Ao Ady)) Adyigr Ao Adyiys) @ By
e q
m a»f 6
> o den Age (dyr A A dy.)) Adyigr Ao Adyir; ) @ 5— =
n=1 yq
n#rg
o°f 0 o°f 0
——dyi A Adyip; ® — — S Adyir; ® =—+
va Oy, o yits Oyq v Oyq vits Oy,
u o° — 0
E ((=1)"y, ! Adyr A+~ Adyg A=+ Ndyiy;) ® 7— =
n=1 3yq 9
NErL e i
n . 0°f — p]
> (-1 yq—dx,./\dyl/\~~/\dyq/\~-/\dy.~+,-)®67.
n= q9
n#rl,-ulﬂ‘-‘ﬂ
Now we define for n #71,...,Tit+j an element A\, € Lit; by the formula

a° , i}
An|Uko = ((—l)qz(,f”)——(,éyd:cslk") A d:cgf”) Aoos A dz(’w) Ao A aa:(k")) ®

day T gl
An|(M\ Ui) =0.
We can easily see that )
- [51 77] = . Z An-
n=1

NFETL, o Tt
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But by virtue of the first part of the proof An € [Li, Lj]. Thus we have 8 — [£,n] €
[Li, L;], and consequently 8 € [L;, L;]. This finishes the proof of the theorem.
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