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COMPARISON OF DIRAC OPERATORS ON 
MANIFOLDS WITH BOUNDARY 

Ulrich Bunke 

February 14, 1991 

Abstract 

We introduce boundary conditions for Dirac operators D giving selfadjoint ex
tensions such that the Hanoitonians H := D2 define elliptic operators . Assuming 
bounded geometry we estimate the trace of the difference of two heat operators 
e~* associated to a pair of Dirac operators coinciding on cocompact sets. 
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1 Introduction 

The aim of the present paper is to extend some results obtained in [3] to the case of 
manifolds with boundary. Let D be the Dirac operator associated to a Clifford bundle 
E over a Riemannian manifold (M, g). It is an elliptic formally selfadjoint differential 
operator of first order. If M is complete, D is known to be essentially selfadjoint on the 
domain C^(MtE) giving a supercharge (see [2],[7]) on the Hilbert space L\MyE). If 
M has a boundary and is hence noncomplete this fails and one has to require suitable 
boundary conditions. In order to have good estimates on the kernel of the heat operator 
e~tH the Hamiltonian H := D2 has to be elliptic at the boundary too . This means that 
some boundary value problem constructed from H and domH must satisfy the condition 
of Lopatiskij-Shapiro [15] , [14]. That makes finding such a boundary condition more 
sophisticated. In section 3 we discuss global boundary conditions (as e.g. introduced in 
[1]) which exist in any case and also local boundary conditions which require a further 
structure of the Clifford bundle at the boundary as considered in [13]. 

The main result in [3] was the trace class estimate of the difference of heat operators 
associated to Dirac operators on manifolds and Clifford bundles coinciding outside of 
compact sets. Such results are important e.g. for applying scattering theory to compare 
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the absolute continuous spectrum, computing asymptotic constants [5] e.t.c. In section 
5 we extend this result to manifolds with compact boundaries. The technique of the 
proof is slightly different from that used in [3], In the present article we employ finite 
propagation speed methods [6],[7] and have to assume bounded geometry of the manifolds 
and bundles. In section 4 we collect some results on local Sobolev embedding theorems 
and elliptic regularity under the bounded geometry assumption. These results seem to be 
folklore but we do not know references. 

Complete proofs including the results of section 4 will appear in [4]. 

2 Generalized Dirac operators 

Let E be a Hermitian"Vector bundle with connection V over a Riemannian manifold 
(M, g) of dimension n. We assume that E has the structure of a Clifford bundle. Thus 
there is a multiplication TM ® E —> E denoted by o and an involution r satisfying: 

r* = r, r2 = 1 

Vr:=[V,r] = 0 

[r,Ko]+ = 0 VXeTxMf 

(Xo)* = - X o VX G TxMy 

KoKo = - | |K | |2 VX eTxM, 

Here * denotes the adjoint with respect to the Hermitian metric in E. For example A* T*M 
or the spinor bundle over a spin manifold have a Clifford bundle structure [11]. More 
examples can be produced using tensor product and direct sum. The Dirac operator D is 
associated with the Clifford bundle structure. It is given in terms of a local orthonormal 
frame { K J ^ of TM by 

D = YJXioVXt (6) 
i=l 

The Dirac operator is an elliptic formally selfadjoint differential operator of first order. 

3 Boundary conditions 

We are going to consider selfadjoint extensions of D acting on the Hilbert space L2(M, E) 
by specifying the domain domD of D. If M is complete we take domD := C^>(M)E) 
where D is essentially selfadjoint. If M has a boundary we have to choose a suitable 
subspace of CJ°(M, E) defined by conditions at the boundary and then have to take the 
closure. We will not indicate the domain in our notation D since it is clear from the 
context. We assume that M has a compact boundary dM and is complete outside the 
boundary. By this we mean that M \ dM is an open subset of a complete Riemannian 
manifold such that the closure in that manifold is M. First we state the partial integration 
formula for the Dirac operator [8]. 

Lemma 3.1 For <pt rp G C?(MtE) 

( D ^ ) = (^,Zty)+/ < n o W > (7) 
JdM 

Here (, ) is the I? scalar product, < , > is the Hermitian metric and n is the inner unit 
normal vector field on dM. 
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From this lemma it is clear that in order to obtain a selfadjoint extension of D one has 
to introduce boundary conditions to make the last term vanish. In addition to this we 
require that the boundary problem of finding <f> for given ip such that 

Hm<f>=-ipt <f>edomHm (8) 

satisfies the condition of Lopatinskij-Sapiro [14] ,[15] for all m 6 N where H is the 
Hamiltonian of the extension of D. Further more we want to satisfy 

r domD = domD, [D, r] = 0. (9) 

We are going to describe two such boundary conditions. A global one can be de
fined without further structure while the local boundary condition requires a section 
e G T(End(E\dM)) satisfying 

e2 = 1, e* = 1, (10) 

[r,e] = 0, [no,e]+ = 0 (11) 

[Ko, e] = 0 VK G TxdM, x G dM. (12) 

In the special case of E = A* T*M one can construct such e out of the decomposition 
of forms into tangential and normal part part leading eventually to the relative and the 
absolute boundary conditions of [13]. 

We split E = I2+ ® E~ according to the ±1 eigenspaces of r and E^M = Ef 0 E± 
with respect to the ±1 eigenspaces of e. For ^ £ T(E) we denote by ^ the parts of rp 
in E-- and by rp± the parts in E± of the restriction of ip to 8M. The Dirac operator is 
represented by the matrix 

» - ( - " ) • m 

We will define a domain for D+, such that it becomes closable. Then we define D~ as 
the adjoint of D+ and 

D-( ° I17*?) (14) 
V - \ closured 0 ) {i > 

becomes selfadjoint. (9) will be satisfied automatically. It remains to verify (8). 

Definition 3.2 The local boundary condition is defined by giving the domain o/D+ 

domD+ := {^ G C?(M, E+) \ip-=0} (15) 

For defining the global boundary condition we introduce the Dirac operator A associated 
to the Clifford bundle E\dM and B := - ( r n o A + A r no). By a local computation using 
(1) . . . (6) one obtains 

Lemma 3.3 

B* = B} (16) 

noB = Bno (17) 

TB = BT (18) 
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B is an elliptic selfadjoint operator on L2(dM, E\QM )• Let P+ be the projection onto the 
space spanned by the eigenvectors of B associated to the positive eigenvalues, K be the 
projection onto kerH and P_ := 1 — P+ — K. 

Definition 3.4 The global boundary condition is defined by giving the domain of D+ 

domD+ := & G C?(M, E+) | P + ^ | W f = 0} (19) 

In the remainder of this section we verify the ellipticity condition (8) for these two bound
ary conditions. For this we describe the domain of H. 

Lemma 3.5 VJ G domH n C?(M} E) iffyj G C?(M,E) and 

1. local boundary cgndition 
^ + = 0 , (DV+)+=0 (20) 
^ ; = o , ( D r ) + = o (21) 

2. global boundary condition 

P+tf9M=0> ( P - + K ) ( D + ^ + W = 0 (22) 

( P _ + K ) ^ , = 0 , P+(D"rW=0 (23) 

This is proved using Lemma 3.1, 3.3 and 3.5 simply by employing the definition of the 
adjoint operator. 

Proposition 3.6 Let m G N. For both the local and the global boundary condition the 
boundary value problem finding <f> for given ip such that 

Hm<t> = rl>t <f>edomHm (24) 

satisfies the condition of Lopatinskij-Shapiro. 

Proof : The condition of Lopatinskij-Sapiro can be verified by local calculations with the 
symbols of Hm and the boundary operators corresponding to the condition <f> G domHm. 
We introduce normal coordinates at x G dM {x1

)..., xn"1
i t} where t is the distance to 

the boundary. Let {ft,..., ft_i, .7} be the corresponding covariables. The symbol of Hm 

is ( | |( | | 3 + rf2)m. We replace r) by — t Ĵ  and hence have to find the solutions of 

(i iaiM^rr/(o = o (26) 

in the Schwarz space 5(R + , J_*») =: S of functions with values in the spinor fibre Ex . 
Let 8 be the symbol of the boundary operator. We are done if we show that s f(0) = 0 
implies / = 0. The general solution of (25) in S is 

p(t)e-W (26) 

where p is a polynomial of order m — 1 with coefficients in Ex. 
First we consider the local boundary condition. FYom (20),(21) we obtain the condi

tions 

(ź)"]'{**-*}! Ҝ l ľ - I Ž I I W«Ҝ Н 'Я =0 (27) 
+ |i=o 
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{ [ - l + g^o-бo] [KP- ( f ) ] W»<»'«}] = 0 (28) 

+ |<=o 
for / = 0,... m - 1. By induction in / and the order of p using the commutation relations 
(10) .. .(12) one obtains p = 0 proving the claim for the local boundary condition. 

To discuss the global boundary condition we have to calculate the symbol of the 
boundary operator. Let r(() be the positive spectral projection of the symbol of B. Then 
r is the symbol of P + while the symbol of K vanishes since K is smoothing. The conditions 
read off from (22),(23) are 

(l-r(O) 

Kí) 

[llď-(£)]We-»ť»''} 

j[i -(|)]'{кo 

„ o | + ! > ' o * . ] [|t|> - ( I ) ] ' {K.Гe-W} 

(i-K0) 

= 0 

|t=0 

д n _ г 

n ° яï + Iľ дз? ° •6° дt 11(11 ,-(ž)lW'~'}) -• 
•• > |f=0 

(29) 

(30) 

(31) 

(32) 

for / = 0, . . . m — 1. Again using induction in the order of p and the relations (16). . . (18) 
we obtain p = 0. This proves the assertion in the case of local boundary conditions. D 

Assuming one of the above boundary conditions we can apply elliptic theory to obtain 
a parametria of Hm near the boundary. 

Corollary 3.7 The operator Hm equiped with local or global boundary conditions admits 
a semilocalparametric Wm : L\M} E) -+ W^m(Mt E)C\domHm near the boundary where 
W^2m( Af, E) is the local Sobolev space of order 2m defined with the connection V. 

Corollary 3.8 For every compact K C M containing dM and I £ N there exists an 
open neighbourhood U of K and C > 0 such that for all r/> G domD' holds 

IIVVlliW) < C [ HDVlliW*) + ML^E) } . (33) 

Corollary 3.9 H is the closure of the restriction of H to domH n CS°(M}E). 

That 3.8 and 3.9 follows from 3.7 is shown in [12]. 

4 Analysis on manifolds of bounded geometry 

In the next section we have to compare the Sobolev norm associated to the connection 
V with the norm associated to the elliptic operator D. In general these norms are not 
equivalent [9]. Furthermore we need a uniform bound of local embedding constants. For 
this reason we introduce the notion of bounded geometry [9]. 
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We say that a Riemannian manifold (M, g) has bounded geometry of order k if for 
every x G M there exists an open chart neighbourhood containing a r-ball B(xt r) such 
that ||0tj||c*+- < C. Here #> are the coefficients of the metric in these coordinates and 
C, r are chosen uniformly with respect to x G M. We call an atlas of such charts an atlas 
of bounded geometry. Analogously a Hermitian vector bundle E has bounded geometry 
of order k if the charts of an atlas of bounded gemetry of M are covered by trealizations 
of the bundle such that the connection coefficients satisfy ||rJ |̂|Ck < C where C is chosen 
uniformly on M. As it is shown in [10] the condition ||V.R|| < Ctl = l,-..,fc and a 
uniform lower bound of the injectivity radius is sufficient for bounded geometry of order 
k of M. If in addition || V*K\\ < Ct I = 1 , . . . , k then E has bounded geometry of order k. 
Here R and K are the curvatures of M and E. 

For s < r let B(xr$) be the *-ball at x . Let 6(x) G W2*h(B(xt8)tEy 0 Es be the 
delta distribution at x for k > | . Here * denotes the dual. 

Lemma 4.1 IfM and E have bounded geometry of order k > | then there is a constant 
C such that for all x G M 

W(x)\\w*.*{B(st,),Ey®Es < C (34) 

This lemma is proved by comparing the Sobolev norms induced by the connection with 
that given by the charts and trealisations of bounded geometry. Of course near the 
boundary we have 

Lemma 4.2 For k > f and K CM compact such that dM C U there exists a neigbour-
hood U of K and a constant C with 

\\6(x)\\W2.k{UtE).QEs <Ct V* G U (35) 

Lemma 4.1 and 4.2 together give a uniform bound of 6(x) in the dual of the Sobolev 
spaces on *-balls (s fixed). 

Theorem 4.3 Let Mt E have bounded geometry of order k > 0. Then there exists « > 0 
and C < oo such that for all I < ktvj G domD', x G M 

\\nwv(B(*t.),E) < C(\\DlW»{MtE) + | M U W ) ) (36) 

The proof of this theorem is rather technical and will appear in [4]. Theorem 4.3 essentially 
states that the sobolev norm associated to the connection is equivalent to the norm 
associated to the elliptic operator D. In order to globalize (36) one has to employ a 
partition of unity with bounded derivatives up to the order k which exist under the 
assumptions of the theorem [9]. 

5 Finite propagation speed and comparison of heat 
kernels 

In this section we compare two Dirac operators on Clifford bundles coinciding on cocom-
pact subsets. For t == 0,1 let (Mit gt) be Riemannian manifolds of dimension n of bounded 
geometry of order k > | and E* be Clifford bundles on Mi of bounded geometry of or
der k > §. We assume that Mi decomposes as K, U H, where K% is compact and there 
exists an isometry between U0 and Hi covered by a bundle isomorphism E0\u0 —• E\\Ui 
intertwining all structures. Let 

7i = L2(K0t E0) © L2(Klt Ex) © L2(U0t E0). (37) 
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Identifying sections over U0 with those over Ux there are natural embeddings L2(Mit Ei) -+ 
7i. Let Pi be the projections onto these subspaces. We extend the Dirac operators to H 
by zero where they were not defined before. Let Hi :=.])• be the Hamiltonians. 

Theorem 5.1 Let (M0tE0)t(M\t Ex) have bounded geometry of order k > ^. Then for 
allt>0 and I 6 N the differences 

D[e-iH»P0-D[e-iHlPx (38) 

are of trace class. 

Proof: We represent the heat kernels by the Fourier transform 

- — Г 
y/ШJ-

0O 

e-*e'XDd\ (39) 

where the integral converges uniformly. The operators D\e~iHi are smoothing and we 
represent the kernels D\Wi by 

D\Wi(tt xt y) = < *(*), D\e-iHi6(y) > (40) 

The following lemma is essential. 

Lemma 5.2 [7] The operators etXHi extend to all Sobolev spaces W2,k(MitEi) and for 
%l> € W2*(MitEi) supp etXHirp is contained in a |A|- neighbourhood of suppip . 

Let xty £U such that min(dist(x,Ki),dist(y,Ki)) =: u > 1 . Then 

D'oW^t,x,y) - D[Wx(t,x,y) = < 6(x), - i = f e"£ [DJC'AD« - D[e'x*} d\6(y) > 
y/Axt •lR\[-«l«] l J 

(41) 
We can exclude [—ut u] from the integration since by lemma 5.2 the integrand vanishes in 
that intervall. Using partial integration the difference (41) can be estimated by 

Ce-fr ||*(*)||nri.fc(B(»lt)i*)-W. \\t(y)\\w*.*(B{9,#),l?)^-5, (42) 

Here we have employed theorem 4.3 to compare the Sobolev norm defined by the elliptic 
operator D with the norm defined by the connection. Using lemma 4.1 and 4.2 we 
eventually obtain 

\\Dl
0W0(tt xt y) - D[Wx(tt xt y)\\ < Ce~£. (43) 

By essentially the same technique we have also 

\\D\Wi(ttxty)\\<Ce-iJ^ (44) 

for all xty£ M,. Let A(t c > 0 be the multiplication operator with e-
(di^K^ . Then by 

the estimates (43) and (44) the operators A€D\e-'SiPi and (D0e-*0Po - Die-'^Pi)^1 

are Hilbert-Schmidt for « > 0. Set s := £. Then the claim follows from 

D[e-iH'P0 - D[e-iH*Px = [ e -^Po^] \A-\Dl
0e-H*P0 - D[e-H*Px)\ (45) 

+ [(c-'*°P0 - e -^P i )^- 1 ] [^.Die-^Px] 

since the product of two Hilbert-Schmidt operators is of trace class. D 
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Corollary 5.3 The scattering operators 

W± := s - f Hrr^ e,,x>1 t'^PJJ)*) (46) 

exist and are complete. 

That this follows from theorem 5.1 is proved in [2], Lemma 2.6 . 

Corollary 5.4 The restrictions of Di to their absolute continuous subspaces are unitarily 
equivalent. 

The scattering operator W+ gives the unitary equivalence. 
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