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MAPS ІNTO RP2 AND APPLICATIONS 

Peteг Zvengгowski 

§1. ІNTRODÜCTION 

The homotopy classification of (based) maps [X,Y] fгom a space X to a 

space Y takes on adõ̂ ed complexity when Y is not simply connected and ҡAY) 

acts non-tгivially on the higheг homotopy gгoups of Y. A typical example of 

this is Y = RP2n (we shall hencefoгth write P m foг RPm). In this note we aгe 

interested in the case X = V, a closed surface (meaning compact without boundary), 
o 

and Y = P . This case aгises in the homotopy classifîcation of Lorentz metric 

tensoгs oveг the (2 + l)-dimensional space-time manifold Л = V * R. Distinct 

homotopy classes aгe said to deteгmine distinct гelativistic kinks on Ж 
*y 

The stгuctuгe of [V,P ] (foг V orientable) is completely detëгmined in 

Theoгems 1,2 of [8], which in tuгn is based on work of Olum ([4], [5], and [6]), 

and a note of Adams [1] (see also Eells-Lemaiгe [2] foг an exposition of Oluпťs 

work as well as applications to the existence of harmonic and holomoгphic 

maps). Since the Olum papeгs aгe lengthy, while the Adams note is sketchy 

(being actually a letteг to Eells), it may be useful to give a shoгt self-contained 

account of the poгtions of O1um's woгk needed for the case at hand, at the 

same time fîlling in details of Adams' proof, and attempting to give some of the 

geometrical intuition behind these гesults. In §2 we defîne orientation-tгue 

maps, compгessible maps, and Шustrate theiг meaning. The main structure 

theoгems foг [V,P ] (V oriented oг non-oriented) aгe stated and pгoved in §3. 

§2. Tнв CLASSIFICATION THEOREИS FOR [V.P-] 

We fîrst give two basic defînitions, and then attempt to give some insight 

into theiг geometrical meaning. Recall that the fîгst Stiefel-Whitney class 

w^(M) e H^MjZj for any smooth manifold M, and that M is orientable if and 
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only if wt(M) = 0 ([3], p.148, or [7], p.199). 

2.1 DEFINITION: Let f: M •• N be a smooth map (of smooth manifolds). 
* 

We say f is orientation true if f (w^N)) = w (M). 

2.2 DEFINITION: Let V be a closed surface. A map f: V -• P 2 is 
1 1 2 

compressible if f ~ g for some map g = V -* P , where i = P «=-• P is the 

standard inclusion i [x 0 , x j = [x ,x ,0]. 

To understand 2.1 from a more intuitive viewpoint, we shall relate it to 

loops on a manifold. Recall that given any two bases of Rn, they are said to 

have the same or opposite orientation according to whether the determinant of 

the matrix expressing one in terms of the other is respectively positive or 

negative. The same clearly applies to two bases for the tangent space at a 

point P of a smooth manifold M, or even for two bases at two points P ,Q € M 

provided they both lie in a coordinate neighborhood. Given a loop A: I -» M in 

M, one can cover it with a finite number of coordinate neighborhoods and use 

these to "transport" a given orientation at P = A(0) once around the loop. The 

result may be the same or the opposite orientation, in which case the loop is 

called respectively orientation preserving or orientation reversing, and clearly 

depends only on the homotopy class [A] e ^-(M) of A. Since M is evidently 

orient able if and only if all loops are orientation preserving, this suggests a 

relation between this idea and w (M), which we make precise in 2.6 below. 

The standard example of an orientation reversing loop is the central 

meridian of a Mobius band, as shown in Figure 2.3. 
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2.3 FIGURE 

Now consider a map f: M -* N and a loop A: I -»M. Then f A is a loop in N. 

There are four possibilities: A may be orientation preserving or reversing, and 

similarly for fA. It will be proved in 2.6 that f is orientation true if and only if 

A and fA have the same behaviour with respect to orientation, for all [A] € ^(M). 

First let us give two simple examples. 

2.4 EXAMPLES: 

(a) The identity map id: M -* M is orientation true. 

(b) If f is homotopically trivial, then f is orientation true if and only if M is 

orient able (since fA 2 * is orientation preserving for any A), or equivalently 
* 

since f w (N) = 0 no matter what w (N) is). 

The next lemma will help to prove 2.6 and also gives another interpretation of 

w^M). Note first that we may identify H1(M;Z2) « HomfH^Zg) « H o m ^ M ^ ) , 

using the universal coefficient theorem and the fact Z is abelian as well as 

KM) a b « H.M. 
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2.5 LEMMA: Let [A] = a € ^ (M) , then vrAa) equals 0 or 1 according to 

whether X is respectively orientation preserving or reversing, where w.. = Wl(M) 

is regarded as an element of Hom(7r1M,Z ). 

PROOF: It is well known that there are just two stable classes of vector 

bundles f over S , and they are distinguished by their first Stiefel-Whitney class 

w^Q 6 H (S ;Z2) a Z2. Clearly A is orientation preserving if and only if the 

induced vector bundle £: = A (r ) is trivial, where r is the tangent bundle of 

M. The proof is now completed by the equalities 

wx(a) = A (W]L) = A wt(rm) = WjA ( r j = w^fl, 

where the first equality simply expresses the identification 

H1(M;Z2) « Hom(7r1M,Z2). 

2.6 PROPOSITION: f: M -> N is orientation true if and only if X and iX 

have the same orientation character for any loop X in M. 

PROOF: This is now trivial from 2.5. For example, if f w (N) = w (M), then 

setting a = [f] 6 ^ (M) and 0 = f#(a) = [fA] e TT^N), we have 

wx(M)(a) = f*wx(N)(a) = w^Nfta = w ^ N ) ^ ) , 

so A and fA have the same orientation character by 2.5. The converse is 

similar. 

Two other well known equivalent statements and Proposition 2.6 are 

summarized in the next result. We do not prove (iii) or (iv), but note that 

(iii) is an easy generalization of (part of) [7] Theorem 38.12, while (iv) is a 

restatement of (iii) in sheaf theoretic language. 

2.7 PROPOSITION: The following are equivalent: 

(i) f: M -» N is orientation truey 

(ii) a loop X in M is orientation preserving if and only if the loop fA 

in N is orientation preserving, 
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(Hi) F 0 (TC) = /?M(TT), where 0Jir) is the coefficient bundle ("orientation 

bundle") associated to the tangent bundle of a smooth manifold M 

([7], p.200)t and F denotes its putt-back to N, 

(iv) letting % -» M denote the orientation sheaf of any manifold^ one has 

In our main application M will be a closed orientable surface V and N will 
2 2 1 2 

be P . Since w (P ) = x, the non-zero element of H (P ;Z ), we have the 

following corollary: 
o 

2.8 COROLLARY: For an orientable surface V, f: V -» P is orientation true 

if and only if f (x) = 0. 

We now turn to the definition of compressibility. The geometric meaning 

of the definition is clear enough, and we will first illustrate it with a few 

examples. Note that points of P are written [xQ,x ,x ] = [-xQ,-x ,-x ] with 

x2 + x2 + x2 = 1, P1 c P 2 is determined by x2 = 0, and points of T2 = S1 * S1 

are written (6,<p) where Otf are real numbers modulo 2x. 

2.9 EXAMPLES: 

(a) Any homotopically trivial f: V -* P is compressible. 
9 9 9 9 

(b) The maps K: S -M P (the usual double over) and id: P -» P are 

not compressible, since they are non-zero on the second homotopy 

group 7r2. 

(c) The map f: T2 -* P2 given by F(0,<p) = [cos|,sin|,0] is clearly 

compressible. 
2 9 a a a 

(d) The map g: T -» P given by g(0,<p) = [cos-yCOS ,̂coswsin ,̂sinw] is not 

obviously compressible, but can be seen to be compressible using the 

homotopy 
6 0 0 8 9 

H(0,.p,t) = [cos^cosp-sin t sin(j)siny?,cos(w)siny+sin t sin(j)cos^,sin(j)cos t ], 
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with H(0,<p,l) = [cos(| + tp)t sin(|+ <p)t 0]. 

We now show that for f: V -• P , the compressibility of [f] is nearly 

determined by SqXy € H2(V;Z2), where y = f (x) and as always x € H ^ P 2 ^ ) 

'2r is the non-zero element (we also use x for the non-zero element of H (P^jZ )). 

o * 
2.10 PROPOSITION: Let f: V -» P , y = f (x). If i is compressible then 

1 1 2 

Sq y = 0, whereas if Sq y = 0 then there exists some compressible map g: V -* P 

with y = g (x). 

PROOF: First, we set up notation i: P1&* P2 and j = P2<--> P00 for the standard 

inclusions, and write ji = k: P <=-> P°. Iff is compressible we have f ~ ift for some 

iy V -» P1, whence SqV = SqXf*(x) = Sq^Ji^x) = f*SqV(x) = 0 since 

SqV(x) € H2(P1;Z2) = 0. On the other hand, suppose SqXy = 0. Since Sq1 = ft 

the Bockstein homomorphism arising from the coefficient homomorphisms 

0 -» Z2 -* Z4 -* Z2 -» 0, this is equivalent to y being the reduction of a Z4 

cohomology class. A quick look at the (well known for any surface V) 

cohomology H (V;A) for A = Z,Z4 shows that all classes in H (V;Z ) are in fact 

reductions of integral classes in H (V;Z). 

Hence, letting p be the coefficient homomorphism induced by Z -»-» Z2, 

there exists z e H^VjZ) with p(z) = y . Since P1 * S1 is a K(Z,1), there is a 

map h: V -* P representing z. Let g = ih, which is evidently compressible. It is 

well known that kh: V -»P00 = K(Z2,1) represents on one hand the cohomology 

class (kh) (x), and on the other hand also represents p(z). Thus 
* * * * * * 

y = p(z) = (kh) (x) = (jih) (x) = (jg) (x) = g j (x) = g (x), as required. D 
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§3. STRUCTURE OF [V.P2] 

3.1 THEOREM: Let V be a closed surface, f: V-*P2, and Y = f (x) 6 RX(V\Z2). 

We have 

(a) If i is orientation true then there are countably many classes 

[g] 6 [V,P2] with, g*(x) = y, 

(b) If i is non-orientation true then there are exactly two classes 

[g] € [V,P2] with g*(x) = y, 

(c) In the non-orientation true case, with V orientable, both classes 

corresponding to the given y are compressible. 
* * * * * * 

PROOF: The condition f (x) = g (x) implies i f (x) = i g (x), i.e. 
* * 

(fi) (x) = (gi) (x), where i: L«=-> V is the inclusion of the 1-skeleton of V. 
2 m 2 m 

Letting j: P <=-> P , we have j»: [L,P ] -> [L,P ] and the previous equality is the 

same as jjJfi] = Life-]- But dimL = 1 implies that jji is an isomorphism, by 

the cellular approximation thoerem. So [fi] = [gi], or equivalently f|L £ g|L. 

Conversely, f|L - g|L implies i f (x) = i g (x), but i : H1(V;Z2) -» H1(L;Z2) is 
* * * * 

monic so f (x) = g (x). Thus, as mentioned in [1], f (x) = g (x) is equivalent 

to f|L - g|L. 

By standard obstruction theory, the remaining obstruction to a homotopy 
on all of V (= V ( 2 )) lies in H2(V; TT2(P2)), where ?r2(P

2) is the local coefficient 
2 2 

system 7T2(P ) = Z with the non-trivial action of 7r (P ) = Z , pulled back by 
2 2 

f+ = IT (V) -* ^(P ) to form a local coefficent system on V. Since 7r2(P ) is 

isomorphic as a local system over P to the orientation bundle of coefficients 

0 (TT), our obstruction lies in H2(V;f~V (7r)) « Z (cf. [7], p,201). Otherwise, it 
P P 

is not hard to see that the local system of coefficients will have the effect of 
2 1 

identifying the fundamental cocycle in C (V,f~ /? Jir)) with its negative, so 

r 
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H2(V; T 1 J*)) K Z0 here. This proves (a), (b). 
r 2 

9 1 

For (c) it will be useful to first observe that irJJP ,P ) may be identified 

with the group ring Z[Zo], where Z = {l ,t} and t acts as t(m + tn) = n + mt, 

representing the action of x (P ) = Z on this group. This can be seen from 

the exact homotopy sequence 
o - *2(P2) = z - - ^ . p 1 ) -L ^(P 1 ) = z - ~ ^ (P 2 ) = z2, 

which shows Imd = 2Z « Z. Thus icSP2,?1) is an extension of Z by Z, and 
9 9 

must be the non-abelian extension since the action of TT (P ) on *- (P ) is 

non-trivial. This is precisely Z[Z ]. 

Again following [1], we note that the obstruction to a compression into P 
9 9 1 

lies in H (V; 7r2(P ,P )). This group will be (in the case f non-orientation true 

and V orientable) 
zN/{i - 1 ) *z-

It follows that the map 
Z2 « H2(V; x2(P2)) , Z « H2(V; ^ . P 1 ) ) 

n 

is zero, which means that for the two classes [f], [g], € [V,P ] corresponding to a 

given non-orientation true y e H^VjZ ), the difference between their 

obstructions to compressibility is zero. Thus they are either both compressible 

or both incompressible. Combining this with 2.10 completes the proof of (c), 

since Sq = 0 on H (V;Z ) when V is orientable. 

3.2 REMARK: In case (c) Adams does not distinguish between V orientable or 

non-orientable. However, his result certainly does not hold if V is 

non-orientable, an easy example being V = P and 0 = y e HX(P ;Z0). 

Certainly Sq y = 0, and y # w (P ), so it represents a non-orientation true 
9 1 1 9 

map, but [P ,P ] a H (P ;Z) = 0 shows that there is at most one compressible 
9 9 

homotopy d ,s in [P ,P ]. 
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For an orientable surface V, further details giving the complete 
n 

classification of the compressible maps of V into P are given in [8]. The 
* 2 

incompressible ones, of course, satisfy f (x) = 0 so lift to maps V-+ S and are 

readily classified by their Brouwer degree. In the applications to relativistic 

kinks, the Brouwer degree of these incompressible maps corresponds to a known 

physical invariant, the "kink number". For the compressible maps, it is not yet 

clear what the physical distinction between the two homotopy classes corresponding 

to a given 0 •£ y € H^VjZg) represents. 
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