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ON COTANGENT BUNDLES OF SOME NATURAL BUNDLES 

Ivan Kolaf 

Abstract. We first explain how natural operators transforming vector fields on man
ifolds into vector fields on a natural bundle F can be used for constructing natural 
operators transforming vector fields on manifolds into functions on the cotangent 
bundle of F. Then we characterize some natural bundles with the property that all 
operators of the latter type can be constructed in such a way. As a special case we de
termine all natural functions on the cotangent bundle of the bundle of one-dimensional 
velocities of arbitrary order. 

AMS Classification: 58 A 20, 53 A 55 

All manifolds and maps are assumed to be infinitely differentiable. 

1. Let Mfm be the category of m-dimensional manifolds and their local diffeomorph-
isms. Consider a natural bundle F over m-manifolds, [9], [5]. 

Definition 1. A natural function g on F is a system of functions gM '• FM —> R for 
every m-manifold M satisfying gM = 9N ° Ff for all / : M —> N" from Mfm. 

The simpliest example of a natural function is the Liouville form of the contangent 
bundle interpreted as a map AM : TT*M —* R. We remark" that the results of Section 
26 in [5] imply that all natural functions on TT* are of the form h o A, where h G 
C°°(R, R) is an arbitrary smooth function of one variable. 

Some natural functions on the cotangent bundle T*FM = T*(FM) can be const
ructed by means of the natural vector fields on the natural budle F. 

Definition 2. A natural vector field f on F is a system of vector fields f M ' FM —* 
T J P M for every m-manifold M satisfying TFf o £M = £N ° Ff for all / : M —> 1V 
from Mfm-

In general, levery section s of a vector bundle E —> X defines a function s on the 
dual vector bundle q: E* —* X by 

s(w) = (s(qw),w), . w£E*.. 

This paper is in final form and no version of it will be submitted for publication elsewhere. 
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Clearly, for every natural vector field £ on .F, the maps £M: T*FM -> R form a 
natural function on T*F. Moreover, if we have k natural vector fields £1,•. . , & on 
F and a smooth function h: R* —> R, then A(£i,... ,£*) also is a natural function on 
T*F. 

A natural vector field cm the tangent bundle is the Liouville vector field LM gen
erated by the homotheties in the individual fibers of TM. One verifies easily that 
LM: T*TM -> R is identified with the Liouville function AM - TT*M -> R by the 
canonical isomorphism TT*M -> T*TM, [8], [5]. 

2. Let C°°TM denote the set of all smooth sections of a tangent bundle TM —• M. 
In [4] we have clarified that the natural vector fields on F can be interpreted as the so-
called absolute (or constant) natural operators C°°TM -> C°°TFM = C°°(T(FM)) 
transforming vector fields on M into vector fields an FAf. Now we are going to deduce 
that under certain assumptions an F all natural operators C°°TM -> C°°^T*FM^ R) 
transforming vector fields on M into functions an T* FAf can be constructed from the 
natural operators C°°TM -> C°°TFM. Analogously to [4], the natural functions an 
T*F correspond to the constant operators. 

The set NF of all natural operators C°°TM -> C°°TFM is a vector space, provided 
we define 

(A + B)M (X) = AMX + BMX, (kA)M(X) = k(AMX) 

A, Be JV>, * € R, X e C°°TM. Our first assumption is 
I. The dimension of Np is finite. 

By [4] and [6], this is true for all Weil bundles and for the bundles of higher order 
tangent vectors. 

Let Nop(T,T*F x R) denote the set of all natural operators C°°TM -> 
C°°(T*FM, R). For every smooth function h: Np -> R we construct a natural opera
tor Dh € Nop(T, T*F x R). Since the intrinsic definition of Dh is somewhat abstract, 
we start with a "coordinate" description of Dh. Fix a basis A i , . . . , An of Np, which 
identifies Np with Rn. Then every h € C°°(Rn,R) defines Dh € Nop{T,T*F x R) 
by 

(1) (Dh)MX = h(AMX,..., An^X): T*FM -> R, 

X € C°°TM. To describe the same construction in an intrinsic way, we have to 
take into account that every X € C°°TM and every w € T*FM define a linear map 
<p(X9w): JVf->Rby 

<p(X, w)(A) = AMX(w) 

This is an element of Np and (1) can be rewritten as 

(2) (Dh)MX(w) = h(<p(X,w)) 

with h e C°°(N*?,R). Thus we obtain a map D: C°°(N*,,R) -> Nop[T,T*Fx R), 
h*-+Dh. 
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3. Write di for the vector field d/dx1 on Rm and A(di) for A^rn(b\). To reconstruct 
a function h: Np -* R from a natural operator A G Nop(T, T*F x R), we assume F 
has the following property. 

II. There exists a smooth map j : Np -> (T*F)0R
m such that 

(3) (ji,ti) = A(di)(ju), AeNF,ue N*F. 

Then we define a map S: Nop(T, T*F x R) -> C°°(N£, R) by 

(4) S(A) = A(b\)oj 

Lemma 1. It holds S o D = id. 

Proof If we use a basis -Ai,... ,An of Np, we obtain by (4), (1) and (3) 

S(Dfc)(tt) = i M ( f t ) 0 ^ -I!,). • 

4. Let DifFjRm C DifIRm be the subgroup of all diffeomorphisms of R m preserving 
the origin and the vector field b\. To deduce the converse relation D o S = id, we 
need another assumption. 

III. The orbit of j(N%) with respect to DiffjRm is dense in (T*F)0Rm . 

oo Proposition 1. If I, II and III hold, then all natural operators C°°TM —> C 
(T*FM, R) are of the form 

Dh for all h € C°°(N^R). 

Proof. It is well known that every X € C°°TM nonvanishing at x € M can be 
transformed into di by a local diffeomorphism. This implies that if Ai,' Ai G 
Nop(T,F*T x R) satisfy Ai(di)|T*.F0Rm = .A2(di)|T*.F0Rm, then Ax = A2, [5], 
[6]. By Lemma 1 we have (SoDo S)(A) = S(A), i.e. 

A(di)(ju) = (DoS)(A)(di)(ju) 

By naturality, it holds 

(5) A(b\)\W = (DoS)(A)(di)\W 

for the whole orbit W of j(N*>) in T*.F0R
m. Since W is dense in T*.F0R

m by III, the 
restrictions of both sides of (5) to T*.F0Rm coincide. Hence (D o S)(A) = A. D 
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5. We are going to apply Proposition 1 to the bundle T[M = JQ (R, M) of one-
dimensional velocities of order r. First of all we determine all natural functions on 
T*T[. We have the generalized Liouville vector field LM on T[M induced by the 
reparametrization x(t) i-> x(kt), 0 ^- k G R, of a curve x: R —> M and a natural 
linear morphism QM- TT[M —• TT[M introduced by de Leon and Rodrigues, [1]. 
According to [4], all natural vector fields on T[ form an r-parameter family linearly 
generated by 

(6) ' 2-1=2-, L2 = QoL,...,Lr = Qr~1oL 

Proposition 2. All natural functions on T*T[ are of the form 

h(U,... , Lr) for ah1 he C°°(Rr, R). 

Proof. If xx are the canonical coordinates on Rm , the r-th order Taylor expansions of 
a curve xx(t) determine the induced coordinates y } , . . . ,t/j:on T1

rRm. The coordinate 
form of Q is Q_m(dxx,dy\,..., dyr) = (0,dxx , . . . , dyr_x) while the coordinate expres
sion of L_m is dxx = 0, dy\ = sy\^ s = 1 , . . . ,r, [5]. If we introduce the additional 
coordinates on T*T[Rm by 

(7) qidJ+pldyl+.-.+pW,. 

then the coordinate form of the natural functions L\9 L2,... , Lr on T*T[Rm is 

(8) 

PiV\ + ••• + rpryl
r 

Ph{ + --- + (r-l)pryi.-i 

PiVi 

Denote by Br the vector space of all natural vector fields on T[. The basis (6) of 
B[ induces some coordinates a i , . . . , a r on B{*. Define a map .;': Br* —> (r*T1

r)oRm 

by 

(9) y\ = 1, p\ = a i , . . .p[ = ar and zero at all other places. 

Using (8) one verifies directly 

(10) h(Lmm,... Lr_m ) o j = h for all h G C°°(Rr , R). 

Analogously to Proposition 1 it suffices to Reduce that the orbit of j(Br*) with respect 
to the subgroup DiffoRm C DiffRm of all origin preserving diffeomorphisms is dense 
in (T*T[)0R

m'. Since T*T[ is a natural bundle of the order r + 1, the action of 
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Diff0R
m on (T*T{)0R

m factorizes through the (r + l)-th order jet group G^1, [5]. 
One deduces easily that the transformation laws of j/J,. . . , y* are 

(11) i 

y~r = ajl...jryi1---yir + --- + <ijy3r 
where the dots in the last row denote a polynomial expression we shall not indicate 
explicitely. 

Consider first the case m = 1. If t/J ^ 0, then y = (y 1 , . . . ,yj) is r-jet of a local 
diffeomorphism R —> R. Hence we can have y = (1 ,0 , . . . , 0) in a suitable coordinate 
system. From (7) and (11) we deduce the following transformation law of q\ on the 
kernel of the jet projection Gr+1 —> Gr 

(12) qi = qi - apr 

where a G R is the only coordinate on Ker(Gr+1 —• Gf). If pr ^ 0, we can obtain 
qx = 0 by a suitable choice of a. This proves the denseness of j(B[*). 

For m > 2, let y = (y j , . . . ,y*) be the r-jet of an immersion R —• Rm. Then we 
have 

(13) yj = 1 and all other y's vanishing 

in a suitable coordinate system. By (11), the subgroup of G^ 1 preserving (13) is 
characterized by 

(14) a\ = 1 , a\ = 0 , a\x = 0 , . . . , a Y . . i = 0 , t = 2 , . . . ,m 
r-times 

It suffices to show that we can transform each element from a dense subset of 
(T*T{)0R into (13) and 

(15) p j = 0 , . . . , p r = 0,g« = 0, t = 2 , . . . , m 

by means of a suitable element of GJ^1. First of all, from (7) and (8) we deduce 
—r ~i r 
Pi - "iPj 

where (2J) is the inverse matrix to (aj). Hence pr € Rm* and for pr ^ 0 we can select 
a basis in Rm such that yx = (1 ,0 , . . . ,0) and pr = (p r ,0 , . . . ,0). 

Assume by induction we have (13) and 

(16) Pj = (rf ,0 , . . . ,0) for* = A; + l , . . . , r 

From (7) and (11) we deduce the following transformation law of p* on the kernel of 
the jet projection G^*"1-1 —* G^k 

(17) P?=J>*+caL.irf 
where c is a non-zero integer. For pr ^ 0 we can obtain p\ = 0 by means of a\lmtml9 

t = 2 , . . . , m. In the last step of such a procedure we can obtain q = ( 0 , . . . , 0) by 
using the kernel of the jet projection GJĴ 1 —> GĴ . • 

We remark that the case r = 2 was studied in another setting by Doupovec, [2]. 
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6. According to [4], all natural operators C°°TM -+ C°°TT[M form a (2r + 1)-
parameter family linearly generated by (6) and 

(18) T{, Vx = QoT{,...,Vr = QroT{ 

where T{ denotes the flow operator of T[. 

Proposition 3. For dhnM > 2, all natural operators C°°TM --> C°°(T*T[M,R) 
are of the form. 

h(Lu...iLr,Vu...,Vr,t1
r) forallheC°°(R2r+\R). 

Proof. Write N[ for Nj* . The basis (6) and (18) induces some coordinates a\,... , ar, 
&!,... ,6 r , conN[*. Definej: N[* - (T*T[)0R

m by y\ = l,pf = bk,p* = a*, q i = c 
and zero at all other places, k = 1,.. ., r. Consider the subgroup ida x DiffoR™"1 C 
Di.fFjRm. Then p\ and q\ remain unchanged, while p** • • • >Pr behave in the same way 
as in Proposition 2. This implies that the orbit of j(N[*) is dense. • 

In particular, all natural operators C°°TM -> C°°(T*TM, R) are of the form 
h(L)V)T)y where L is the classical Liouville vector field on the tangent bundle, V 
is the operator of vertical lifts, T is the flow operator of the tangent bundle and 
h G C°°(R3,R). This result was deduced in a quite different setting by Kobak, [3]. 
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