
WSGP 14

Václav Studený
General Nijenhuis tensor: an example of a secondary invariant

In: Jarolím Bureš and Vladimír Souček (eds.): Proceedings of the Winter School "Geometry and
Physics". Circolo Matematico di Palermo, Palermo, 1996. Rendiconti del Circolo Matematico di
Palermo, Serie II, Supplemento No. 39. pp. [133]--141.

Persistent URL: http://dml.cz/dmlcz/701570

Terms of use:
© Circolo Matematico di Palermo, 1996

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/701570
http://project.dml.cz


RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO 
Serie II - Suppl. 39 (1996), pp. 133-141 

GENERAL NIJENHUIS T E N S O R 

A N E X A M P L E OF A SECONDARY I N V A R I A N T 

VACLAV STUDENY 

A B S T R A C T . All bilinear natura l operators with Nijenhuis tensor domain an codomain 
which are secondary invariants are found. 

1.1 This short note aims to demonstrate the power of the secondary invariants theory on 
the Nijenhuis tensor case. Why, whereas other problems of the invariants theory are an aim 
of extraordinary interest, secondary invariants, which are without question worthy to note, 
have not been systematically studied yet. The theme was opened by Jin Vanzura and this 
paper is, as far as I know, first publication containing solution of this theory. What do we 
call a secondary invariant? Let us reason about a common domain: smooth left action of 
a Lie group on a smooth manifold1, where a number of invariant mappings can be defined 
on. A secondary invariant (with respect to invariant mapping f and invariant set A) is a 
mapping which is invariant on the inverse image of A with respect to / and defined on some 
neighbourhood of this set. 

If Codom(f) c A then every secondary invariant with respect to / and A is an invariant 
in the conventional meaning. If / is a polynomial and A is a set of single point of some 
Euclidean space, then the secondary invariant with respect to / and A is an invariant whose 
area of invariance is algebraic manifold but a general case can be very unusual and not very 
easy to study. 

1.2 Let us recall well known correspondence between natural operators and invariants of 
type fibers [2,3] and let us introduce some useful notations: X is a smooth manifold and T is 
the tangent functor. F^X indicates the fibre bundle associated with the manifold of frames 
of order r over X whose type fibre is Q, as well as TrX indicates the manifold of r-jets with 
the source at origin of Rn and the target in X and X(X) denoted the set of all sections of 
TX —> X. The set of all smooth sections of FQ(X) will be indicated by C°°FQ(X). 

Gn is the r-th order differential group in the dimension n with canonical jets coordinates 
(a)l...jp)u<v => iu<jv and with mappings (b^ jp)u<v ^ iu<jv which are the composition of 
coordinates with the group inversion. 

Let us denote by eg) the usual tensor product and by 0 the symmetric one. 

1991 Mathematics Subject Classification. 58A20, 53A55. 
Key words and phrases, invariant mapping, connection, Nijenhuis tensor. 
0 This paper is in final form and no version of it will be submit ted for publication elsewhere 
XA11 manifolds here are supposed to have constant dimension indicated n if there is nothing 

different said explicitly and all mappings here are supposed to be smooth. 
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A = Rn <g) Rn* as well as B = Rn ® Rn* 0 Rn* are manifolds with the 
standard tensor action of G\. The canonical coordinates on T£A will be denoted by 
(a),a)kl, a)klk2,... ) p < q ==> kp<kq in the obvious sense. The type fibre of linear syrnmetric 
connections will be denoted Q = Rn ® Rn* © En* with the standard action. The coordinates 
on it are denoted by (T)k). 

[ - , - ] : X(X) x X(X) —-> X(X) is the Lie bracket, 

r_ _l / C°°FAX x C°°FAX —+ C°°FAX 
[ ' J : \ (a,/3) — [aj] 

where [a,/3](0 = a(/?(0) - P(a(Q) 

is the commutator and the mapping [—, —] : A x A —• A is induced by the preceding 
mapping in the case where X degenerates to a point and is called a commutator, too. 

1.3 Let a and /? be two tensor fields of type (1,1) on manifold X. 

(X(X)xX(X) —• '*(*) 
1 a'Pi-\ (00 — [«(0./»(C)] + «o/3(K,CD-

«(K.flC)])-/*([«(O.C])+ 
[/?(0,«(C)] + /?°«([OCD-
/*(K.«(C)])-«([/?(0,C]) 

is a tensor field of type (2,1) whose construction was discovered by A. Nijenhuis2. 
The mapping 

' ^ 1 (00 —> [«(0,/»(C)] + «o/J(K,C]) 
-«([0/?(C)])-/?([«(O,C]) 

is additive in each component but not homogeneous — in general. Nevertheless, if 
a o/3 = p o a we have (using formula [f-t,g-(] = f-g >[£,{] +f-£(g)'C-g - ((f) • {, 
where £(g) is derivative of g along £) 

(«,/J)(/-f,ff-C) = [/-«(0.ff-/'(C)]+ 

°o$([f-t,g.Q)-a([f.t,g.p(Q])-P([f-a((),g.C]) = 

f • 9(WO, /?(0] + « ° /*(K, CI) - «(K, /5(C)]) - /3([«(0, C])) + 

/ • («(0(<?) • 13(0 + CGO •«° /?(C) - CO?) • «(/*(0) - «(oW(-C))-
- 9 • (/?(C)(/) • «(0 + C(/) •«° 0(0 - 0(O(/)«(-OC(/) • £(«(0)-) 

2 Albert Nijenhuis X n _ i - fo rm ing sets of eigenvectors —- fhdag. Math. , 1951, 1 3 , p . 200 - 212. 
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but ((f) • a o /3(0 = C(/) • P{a(0)- consequently, the last line vanishes as well as the 
penultimate line does. That is why the mapping 

f C°°FAX x C°°FAX —> C°°FBX 

{ > ) - \ (a,p) _ • (aj) ' 

. where(a , /3>«,0 = [a (0^(C) ] + «o/9(K,C])-

«(K, / J (C)1) - /»(W0, CD 

is a tensor field of type (1,2) (known as Nijenhuis tensor) only if (a,/5) G ker([-, - ] ) , 
just as the mapping T'A x T^A —• B with a coordinate expression a^/%, - av$\- -
aj>$b + a V p i s a s e c o n d a r y invariant with respect to the commutator and {0 G Rn} C 
Codom[-, - ] , but it is not an invariant. Moreover, there is a circumstance which is worthy 
to note: [-, - ] _ 1 ( 0 ) is not a submanifold of T'A x T„A, because it is not a manifold at all! 

2.0 But even if [—, — ] _ 1 (0) is not a manifold, this set contains a manifold which is dense in 
it. 

Let us fix some base of A x A. Every element of A x A can be represented as a pair of 
matrixes. 

2.1 Lemma. Let A = {(X,Y) G [-, - ] _ 1 ( 0 ) ; det(X - XE) has n different complex 
roots, E = (S))} be a set of pairs of matrixes. Then A is a manifold of dimension 
n(n — 1) and A is dense in [—, — ]_ 1(0). 

Proof. Let Mat(n) denote the set of all square matrices of order n, and let CCD denote 
the greatest common divisor of polynomials. The mapping X = (x*-) i—• det(X — XE) is 
a polynomial in xl- as well as the mapping which maps coefficients of polynomial of fixed 
degree to coefficients of its derivative is. Two polynomials have a common divisor if and only 
if their resultant, which is a determinant and consequently a polynomial in its coefficients, 
vanishes and the polynomial has a multiple root if and only if it has a common divisor with 
its derivative; consequently the set B = {K; de*(K - XE) has n different complex roots } is 
a dense open submanifold of Mat(n), because it is a set of points at which some polynomials 
have nonzero value. 

Let us reason about the set A = {(K, Z); X G # , Z is a value of some polynomial on 
X} and about the well known mappings 

<j>Q = 1 : x i — • 1 

, f Mat(n) —> Polynomials 
<Pi : \ X K-V CCD{de*(Z - XX); 

Z G Mat(i) is a minor of X} 

/ ^ 
lpn-i+1 = -7 

<pi-\ 
degree(^! \B) is a constant mapping of value n, but this implies (see for instance: Felix 

Rubinovitsch Gantmacher: Teorija matric, Moskva, 1988) that any matrix in B commutes 
only with the values of polynomials in itself and that the number of linearly independent 
matrixes the matrix in question commutes with is n. 
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That is why the mapping 

r A -^ R"(»+D 

' \(X = (x))*j=1,Y .— ( s j , y 0 , y i , . . . , y „ - i ) 

where Y = y0X° + y^X1 + • • • + un-iK""1 

provides global coordinates on A • 

Now our problem can be reformulated in this way: we want to find all bilinear natural 
operators which transform pairs of tensor fields of typ (1,1) corresponding mapping between 
type fiber (see 1.2) of which satisfy the assumption of lemma 2.1, and which can be extended 
to a smooth mapping defined on some neighbourhood of [-, - ] _ 1 ( 0 ) , to a tensor field of 
type (1,2) on the same manifold. (The notion of naturality is used here in more general but 
obvious meaning.) 

3.1 So, our problem is transformed to a standard one, and we can use the standard method 
to solve it. We first compute the order of our operator. The nonlinear Petree theorem (see [2] 
page 179) shows us that it is finite, say of order r. The proof is quite technical and so we omit 
it here. 

The finiteness of order and the knowledge of the general theory (see [2] or [3]) and its 
generalization for our case permits to reformulate the task to the following one: describe 
all secondary invariant mappings T*A x T„A —> B with respect to the commutator and 
{0 G Rn}. 

Let us denote one of these mappings by/ = (f)k) and let i denote a multiindexO < |t| < r. 
To be invariant with respect to the action of homotheties means to fulfill the equation 

/;t(ii-i*iaj..,ji-i*i/9j,)o<i.i<r = * / ; * ( « } , , # , ) . 

Differentiating this equation with respect to k we obtain 

/;*•>!».,/&.) = E S | i ^ " h H + Hi'i*"1-1^ 

(for i = 0 the expression is zero). Computing the limit k —• 0 of the last equation we can 
see: 

(1) / is of order 1. 
(2) / is linear in (a)k) and (/3jfc) 

Now, we are going to describe all the bilinear secondary invariant mappings C°°FAX X 
C°°FAX —> C°°FBX with respect to the commutator and (0 G I " } (which do not depend 
on the choice of X). 

If the dimension of X is 1, there are of course only linear combinations of a^Pl and 
a i /?ii • We will compute all bilinear invariants in higher dimensions. 

3.2 Our way will be demonstrated by the following diagram, in which V is the mapping 
replacing any derivative by a covariant one and pr, are cartesian projections. 
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Qx (.4 0 ( . 4 ® Г * ) ) 

idą x 

A © (A ® Rn*) with canonical 
coordinates 

•B 

K , • \7*;jfc' • .., /?•-,... ),-<*,... 
is endowed with the tensor ac­
tion of Gn. The second power 
is the cartesian one. 

Q x (TnA x TnA) 

pr2 

T\AxT^A—-—>B 

T\A x T\A 

We will describe all secondary invariants ф. Composing them with the isomorphism 
idą x V — which is invariant, too — we find all secondary invariants ҷ>. After that we find 
all mappings / for which there exists ҷ> such that the diagram commutes for any section 5. In 
this way we obtain every secondary invariant we are looking for; since pr2 is invariant, for 
any invariant / the mapping ҷ> = f o pr2 is invariant and / o pr2 o (id x V ) - 1 is invariant 
andconstantoneveryfibreof(idQ xVy^opr^ : Q x (A (A®1RП*)) —• (TnAxT^A). 
Consequently there exist invariant ф with the same expression. 

3.3 After differentiating the action we can see that ф does not depend on Г*k. The requirement 
of bilinearity simplifies our problem. It admits only mappings ф of the form 

- Aaij n,* fiq -4- Яaijkln/

p fiq -4-
- AЬcpqapPj + ПЬcpq ai,kPj;l + 

fiaijk p oq , D^J^^P fía i 
L/pcpq°iiPj;k + JJpcpqai;kPj + ' 

where A-p? = A ^ p , 

A direct computation shows us (one can set aj; = 1 if (i, j) = (p, q) else a* = 0 , j3j = 0 and 
(3ljk = 1 if (i, j , k) = (̂ , u, v) else fyk = 0, . . . ) that the coefficients are components of an 
absolutely invariant tensor. But these are described completely (see [3] page 68 Theorem 4.1). 
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Consequently, we find that all invariant mappings <f> have the following coordinate form: 

exalte + c2a
a/3>.p + c3a>0a.p + cia>Ja

b.p + c5a
a
b/3;.c 

+c6a
aJ>p.b + c7a>p;.c + csa>Ja

p.b + c9a
a

pfi>.c + cloa
a
p0>.b 

+cna>0i.e + c12a>f)a
c.b + c138

a
ba>j;.q + cu«0a?|!,' ;, 

+c156
aa>^c.q + c168

a
ba>/3lc + c178

aa>/3l>p + c188
a
ba>q0;.c 

+c1,8
a
ca>Pl.q + c208

a
ca>/3lp + c216

aa>^b.q + c228
a
ca>p{i\.b 

+C23S
aa>X>p + c2i8

a
ca>Pl.>b + dia>.>p/3

a
b + d2a>.Ja

c 

+d3a
a.pp> + d4a

a
b.p0> + d5a>p.Jt + d6a>p.bp

a
c + dia

a
p.J> 

+dsa
a

p.bl3>c + d9a>.j; + d10a>.b/3; + dnaa
b.cl3> + d12a

a.bH> 

+d136
aap-J>c + duSia'rtPfi> + d156

a
bal.qP> + d166

a
a%J> 

+d176
a
ba\.pp> + dls8

a
bal.J> + d196

a
ap:>q/3> + d2O6a

al>p0>b 

+d218
a
al>qp> + d228

a
al.bp> + d236

a
alj> + dM6e\a<.ip> 

To obtain every secondary invariant (p is as easy as to compose <j> with the mentioned 
isomorphism: in coordinates it means, of course: a).k = a)k + r* ka) - rj^a*. 

The coordinate expression for y\c can be written in the form y>Jc = P6
a
c + T)kK^t

k where 
P6

a
c and K^k are linear polynomials in the variables c\,..., c24, di,..., d24, which do not 

depend on T)k. 
To find all secondary invariants / means to solve the system of linear equations 

KUi ~ Kbci = ° i n t h e c a s e w h e n equations a)(3[ = pjaj
k, a)fi[ + a)/3[f = /Jj-aj + p)ot'hl 

hold and when the resultant of det((a) - XS))iJ) and -J^(det((a) - XS))iJ)) is not zero. 
This equations look as follows: 

cia
a
b^6>j; - cia

a
bfi>8v

cS; + cia
a

bp
v
c8>u6^ - cia

a0>6?8; 

+ c2a
a

cW6>u8; - CRISIS™ + c2a
aJZ8>u6™ - c2a

aJ>6?6; 

+ c3a>^Sa
uS; - c3a>0a

u8^ + c3a>p:6a8™ - ctalP^S; 

+ ••• 

+ 8a
c(c23a>ff6l6; - c23a>pl6Z8; + c23a>ft6l6™ - c23a>pl6?6;) 

+ 6a
c(c2ia>p?6l6l - c2ia>pu8;6? + c2ia>p;8l6? - c2ia>0u8pi) 

+ d^RSlS; - d1a>ftSe'6? + dla"eft6>6? - dxa>MpfSfS; 

+ d2ab"0a
c8>j; - d2a>ja

c6i6; + d2aifts>6? - d2a>up
a
c8n:6; 

+ ••• 
+ 6a(d2iap°p>6u6»b - dualPftS? + d2ia;/3>q6u8? - d2ialp>8;'6>) 

= 0 
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The general solution is: 

Cl = C2 = C7 = C8 = Cn = C12 = 

= C13 = C15 = C17 = C19 = C21 = C23 = 

= dl = d2 = C?7 = d8 = Clu = di2 = 

= di3 = di5 = di7 = dig = (121 = d23 = 0 

C3 = (19 = — d4 = — C10 

dz = Cg = —C4 = —clio 

C5, C6, C14, Ci6, Cis, C20, C22, C24, 

d5, d6, c?i4, di6, clis, cl20, c?22, cl24, are arbitrary. 

We can summarize: 

3.4 T h e o r e m . Any bilinear secondary invariant mapping 

T*AxT*A—^B 

with respect to the commutator and {0 £ Rn}can be obtained as a linear combination 
of the following secondary invariants. 

(1) Nijenhuis tensors: r ^ - r ^ . - ^ + r ^ , {j,k} = {b,c}, {n,0} = {a,/3} 
which are not invariants; 

(2) 6jrj>0pk, {j, k} = {b,c}, {rj,B} = {a,(3} which are not invariants, too; 

(3) S^1^, {i,l} = {a,p}, {j,k,r} = {b,c,p}, {r,,9} = {a,p}. 

Consequently, they create a vector space, the base of which is 

<^cp-^Pc,-<P^c^<c^ 

6ia>(3*pc, 6ia\cpl 6^/3^, c><6/3J, 

« I P U <*aJP
pb, «P

PcPl, <*P
phK, 

6ia*p\p, 6ia*P\„ 6a
ca

p
bf3«qp, 6

a
ca?(3«qb, 

Si«9„PPo *i«\cPh: *ac«\pPl %«9
qhPP, 

3.5 To formulate our theorem in terms of operators we introduce some useful notations. 
Let N = (Nx

jk) : C°°F\X —• C°°FBX denote the value of the Nijenhuis operator 
(Nijenhuis tensor) on the manifold X, D the differential, and C the contraction (C(N) = 
(N-j), C((o4)) = (a\)). pri are the cartesian projections and id is the section with value id 
in every point, ex is the exchange on a cartesian product. 

The value of operators on fields a = (<*j,...) and (3 = (/?j,...) which in coordinates 
look like 3.4.1 can be described as 

N(a,P)orN(p,a) 
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The value of operators on fields a = (a),...) and /3 = (/3j,...) which in coordinates 
look like 3.4.3 can be described as 

fd®DoC(a), DoC(a)®fd, zd0DoC(/3), DoC(/3)®id 

multiplying by C(a) 

P ® (D o C(a)), (D o C(a)) 0/5, a® (Do C(/?)), (D o C(j3)) 0 a 

rd®(3(Do C(a)), -p(D o C(a)) 0 id, id®a(Do C(/3)), a(D o C(P)) 0 id 

As regards 3.4.2 we note that C o N(a, /?) + (3(D o C(a)) = (/3J
ka^) . . . consequently 

the value of operators on fields a = (a*-,...) and ft = (/3j,...) which in coordinates look 
like 3.4.2 can be replaced by 

id®CoN(a,/3), CoN(a,p)®id, id0CoN(/3,a), C o N(/3,a) 0 id. 

We can finish with a theorem: 

3.6 Corollary. The only bilinear natural operators transforming commuting pairs 
of tensor fields of type (1,1) to fields of type (2,1) on the same manifold are 

Fi =N . 

F2 = id0DoC (pn(-))-C (pr 2 ( - ) ) . 

F3=Hr2(-)0(DoC(pn(-))) 

F4 =zd0pr2(-)o (DoC(pn(-))) 

F5 ^0CoN(pn(-),pr2(-)) 

the operators 

Fi o ex 

EX(Fi) 

. EX(Fioex) 

where EX(F)(x) = F(x) o ex, and ex is transposition on cartesian product. 

(but let us note that for i=l we obtain only two linearly independent mappings, 
because N(a,fi) o ex = —N(/3,a)), and the linear combinations of the previous 18 
linearly independent operators. 

Let us note that the only secondary invariants which are not invariant are values 
of natural operations on Nienhuis tensor. 
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