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GENERAL NIJENHUIS TENSOR
AN EXAMPLE OF A SECONDARY INVARIANT

VACLAV STUDENY

ABSTRACT. All bilinear natural operators with Nijenhuis tensor domain an codomain
which are secondary invariants are found.

1.1 This short note aims to demonstrate the power of the secondary invariants theory on
the Nijenhuis tensor case. Why, whereas other problems of the invariants theory are an aim
of extraordinary interest, secondary invariants, which are without question worthy to note,
have not been systematically studied yet. The theme was opened by Jifi VanZura and this
paper is, as far as I know, first publication containing solution of this theory. What do we
call a secondary invariant? Let us reason about a common domain: smooth left action of
a Lie group on a smooth manifold!, where a number of invariant mappings can be defined
on. A secondary invariant (with respect to invariant mapping f and invariant set A) is a
mapping which is invariant on the inverse image of A with respect to f and defined on some
neighbourhood of this set.

If Codom(f) C A then every secondary invariant with respect to f and A is an invariant
in the conventional meaning. If f is a polynomial and A is a set of single point of some
Euclidean space, then the secondary invariant with respect to f and A is an invariant whose
area of invariance is algebraic manifold but a general case can be very unusual and not very
easy to study. -

1.2 Let us recall well known correspondence between natural operators and invariants of
type fibers [2,3] and let us introduce some useful notations: X is a smooth manifold and T is
the tangent functor. FX indicates the fibre bundle associated with the manifold of frames
of order r over X whose type fibre is @, as well as T;; X indicates the manifold of r-jets with
the source at origin of R™ and the target in X and X'(X) denoted the set of all sections of
TX — X. The set of all smooth sections of F(X') will be indicated by C> Fg(X).

G7, is the r-th order differential group in the dimension n with canonical jets coordinates
(aj—1 dp Juco = ju<j, and with mappings (b;1 which are the composition of
coordinates with the group inversion.

Let us denote by ® the usual tensor product and by © the symmetric one.

...j,)u<v = ju<jv
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1 All manifolds here are supposed to have constant dimension indicated n if there is nothing
different said explicitly and all mappings here are supposed to be smooth.
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A = R* ® R™ as well as B = R"® @ R*™ ® R™ are manifolds with the

standard tensor action of G1. The canonical coordinates on T, A will be denoted by
(0}, 044,504k, kyr - Jp<g = K, <k, in the obvious sense. The type fibre of linear symmetric
connections will be denoled Q = R*® R™* © R™* with the standard action. The coordinates

on it are denoted by (I“ )
[—,—]: X(X) x X(X) — X(X) is the Lie bracket,

[_ _] X {C°°FAX X CPF X — C%PF4X
’ (e 8) = la,f] ‘
where [a, 8](§) = a(B(¢)) — B(a(£))

is the commutator and the mapping [—,—] : A x A — A is induced by the preceding
mapping in the case where X degenerates to a point and is called a commutator, too.

1.3 Let o and 3 be two tensor fields of type (1, 1) on manifold X.

(o ﬂ}:{X(X)xX(X) — X(X) '
’ (Y9! — [a(), B(O)] + a0 B(IE, <)
| a([¢, B(O)) — B(le(€), <D+

[B(€), ()] + B o a([€,¢])-
A& () — «([B(£), <)

is a tensor field of type (2,1) whose construction was discovered by A. Nijenhuis?.
The mapping

w g [XXO)XX(X) — X(X)
- ’ﬂ>'{ (319 — [a(€), B + 0 B([€,<])
= o([&, () — B([(&), <D

is additive in each component but not homogeneous — in general. Nevertheless, if
aof =B oawehave (using formula [f-£,g- (] = f-g-[6,(]+F-€(9)-C—g-C(f) -6
where ¢(g) is derivative of g along ¢) )

(a,ﬁ)(f : {,g : C) = [f 0(6),9 ﬂ(C)]-l_
aoB([f &g-C)—a(lf-&g-B(O) - B(f - a(6),g-¢]) =

79 (1€, (O] + a0 B(16,C]) = (6, B = B(Ia(€), ) +

(a(f)(g) B(C) +£(g) - a0 B(C) —&(g) - a(ﬂ(o)—a(f)(g )B(-¢)) -
g+ (BO(F) - (&) + ¢(f) - aOﬂ(ﬁ)—ﬁ(C) Ha(-€)¢f) - B(a(8))-)

2 Albert Nijenhuis X, —1-forming sets of eigenvectors — Indag. Math., 1951, 13, p. 200 - 212.
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but ¢(f) - a o B(€) = ¢(f) - B(a(€))— consequently, the last line vanishes as well as the
penultimate line does. That is why the mapping

. C®F4X x C®*FyX — C>®FpX
("‘)‘{ (e, B) — (af)
where (a, B)(€, ) = [a(€), B(O)] + a 0 B([E, CI)—
a((€, Q) - Aa(€).C)

is a tensor field of type (1,2) (known as Nijenhuis tensor) only if (a, ) € ker([—,—]),
just as the mapping T A x Tf A — B with a coordinate expression o 8}, — a;0%; —
a;.pﬂf +aof kﬂ;; is a secondary invariant with respect to the commutator and {0 € R"} C
Codom[—, —], but it is not an invariant. Moreover, there is a circumstance which is worthy
to note: [—, —]~1(0) is not a submanifold of T, A x T; A, because it is not a manifold at all!

2.0 Buteven if [—, —]~1(0) is not a manifold, this set contains a manifold which is dense in
it.

Let us fix some base of A x A. Every element of A x A can be represented as a pair of
matrixes.

2.1 Lemma. Let A= {(X,Y) € [-,—]7}(0); det(X — A\E) has n different complex
roots, E = (5;)} be a set of pairs of matrixes. Then A is a manifold of dimension
n(n —1) and A is dense in [—, —]71(0).

Proof.  Let Mat(n) denote the set of all square matrices of order n, and let GC D denote
the greatest common divisor of polynomials. The mapping X = (z;) — det(X — AE) is
a polynomial in :c; as well as the mapping which maps coefficients of polynomial of fixed
degree to coefficients of its derivative is. Two polynomials have a common divisor if and only
if their resultant, which is a determinant and consequently a polynomial in its coefficients,
vanishes and the polynomial has a multiple root if and only if it has'a common divisor with
its derivative; consequently the set B = {X; det(X — \E) has n different complex roots } is
a dense open submanifold of Mat(n), because it is a set of points at which some polynomials
have nonzero value.

Let us reason about the set 4 = {(X,Z); X € B, Z is a value of some polynomial on
X} and about the well known mappings

do = T:z—1
bi: {Mat(n) —_ Polynomsials
v X — GCD{det(Z — A\X);
Z € Mat(¢) is aminor of X'}
$i
$iaa

degree(v; |g) is a constant mapping of value n, but this implies (see for instance: Felix
Rubinovitsch Gantmacher: Teorija matric, Moskva, 1988) that any matrix in B commutes
only with the values of polynomials in itself and that the number of linearly independent
matrixes the matrix in question commutes with is n.

Q/)n—i+l =
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That is why the mapping

F: { A — RA(n+1)
. (X:(.’E; ?,j:l’Y i (z;vyoayl,--'ayn—l)
whereY = 5o X° + 1 X' + - + yp_ X"

provides global coordinateson A 0O

Now our problem can be reformulated in this way: we want to find all bilinear natural
operators which transform pairs of tensor fields of typ (1, 1) corresponding mapping between
type fiber (see 1.2) of which satisfy the assumption of lemma 2.1, and which can be extended
to a smooth mapping defined on some neighbourhood of [—, —]~1(0), to a tensor field of
- type (1,2) on the same manifold. (The notion of naturality is used here in more general but
obvious meaning.) :

3.1 So, our problem is transformed to a standard one, and we can use the standard method
to solve it. We first compute the order of our operator. The nonlinear Petree theorem (see [2]
page 179) shows us that it is finite, say of order r. The proof is quite technical and so we omit
it here.

The finiteness of order and the knowledge of the general theory (see [2] or [3]) and its
generalization for our case permits to reformulate the task to the following one: describe
all secondary invariant mappings T; A x T; A — B with respect to the commutator and
{0 e R"}. _

Let us denote one of these mappings by f = (f},) and let. denote a multiindex 0 < [¢| < .
To be invariant with respect to the action of homotheties means to fulfill the equation

fJik(I{‘L‘a;“KILIﬂ;L)OSMS" = I{f.;:k(a3n ﬂ.;t)

Differentiating this equation with respect to k£ we obtain
; 2 H— i H—
£ Bmd) = 3 5 WKMo, + 2 K 7,
. q [

(for . = 0 the expression is zero). Computing the limit ¥ — 0 of the last equation we can
see:

(1) f isof order 1.
(2) f islinear in (%) and (8}, )

Now, we are going to describe all the bilinear secondary invariant mappings C*F4 X x
C>®F4X — C>*FgX withrespect to the commutator and {0 € R™} (which do not depend
on the choice of X).

If the dimension of X is 1, there are of course only linear combinations of al;3} and
alpi,. We will compute all bilinear invariants in higher dimensions.

3.2 Our way will be demonstrated by the following diagram, in which V is the mapping
replacing any derivative by a covariant one and pr; are cartesian projections.
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Q x (A® (A®R™))’ ¢ B

idg k

Q x (T*A x T} A)

A®(A®R™) with canonical or @
coordinates 2

(a,a’k,.. ﬂ,. )<k, .. 1 1 f

is éndo]wed with the tensor ac- SITnA X T, 4 B
tion of G,. The second power L d

is the cartesian one. f

TIAXTIA

We will describe all secondary invariants ¢. Composing them with the isomorphism
idg x V — which is invariant, too — we find all secondary invariants ¢. After that we find
all mappings f for which there exists ¢ such that the diagram commutes for any section s. In
this way we obtain every secondary invariant we are looking for; since pr, is invariant, for
any invariant f the mapping ¢ = f o pr; is invariantand f o pry o (idg x V)~! is invariant
and constant on every fibre of (idg x V) "loprs : Q x (A® (AQR™)) — (TR A X TLA).
Consequently there exist invariant ¢ with the same expression.

3.3 Afterdifferentiating the action we can see that ¢ does not depend on I‘j. - Therequirement
of bilinearity simplifies our problem. It admits only mappings ¢ of the form

bcpq P bcpq

aijk p q
Cpcpq 1 M5k

¢bc Aaz] h q_+_Ba:Jkl pkﬂ

aijk o q
+ Dpcpq 5 kﬂ

aty aji
where AbcM Abcqp, et

A direct computation shows us (one can set o} = 1if (1,7) = (p, g) else o} = 0, 8; = 0 and
5 = Lif (4,7, k) = (t,u,v) else B, =0, ... ) that the coefficients are components of an
absolutely invariant tensor. But these are described completely (see [3] page 68 Theorem 4.1).
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Consequently, we find that all invariant mappings ¢ have the following coordinate form:

cla:ﬁf;p + CZQZﬂ{:;p + C3a€ﬂ:;p + C4alc,ﬁl?;p + c5a:ﬂp;c
+esag Bhy + craf By, + csal Bpy + coap B}, + croay B2,
+Clla£ﬂba;c + clza:ﬂ:;b + C136:a}c’ﬂg;q + 61463(1’};,32;1,
teisbyap B, + crebyab Bl + crrbyaf B, + crsbyaf Bl
+c196lal H c206;‘afﬂg;p + c216§a;’ﬁ,§’;q + czzéfa;ﬂqq;b
+c236gag,3§;p + c246f_.‘agﬂz;b + dial By + dzaf;},ﬂf
+d3ag;pﬂl€ + d4a:;pﬂ£ + d5a;;cﬁba + daa;’;bﬂ? + d7a;;cﬂ£
+dsagy B + dyaf, By + droaly By + duag, Y + dizag, Bl
158708 B + drabad, B2 + disSf ol B + ot Bf
+di765al, B8 + digyal. BF + digbzal. BY + daobiald ,BY
+d21 6Za§;qﬁ,‘,’ + d225:az;bﬂ:,’ + d2362a2;,,ﬂ;’ + d245;a;;b,35

To obtain every secondary invariant ¢ is as easy as to compose ¢ with the mentioned
: s i i ; c o —of i 09T .o
isomorphism: in coordinates it means, of course: o}, = aj + I'jyaf — Ty aj.
H 3 a g H a _ pa i ajk
The coordinate expression for ¢ can be written in the form 3. = P\ +I';, Ky ;" where

P2 and K ,:‘c"'“ are linear polynomials in the variables c;, ..., c4,d1,. .., d24, Which do not
depend on T}, .

To find all seconddry invariants f means to solve the system of linear equations
Kk~ K = 0in the case when equations ol = Biag, o Bl +ai Bl = Bhag + Biak,
hold and when the resultant of det((a} — A6} )i, j) and Zx (det((a — A6})i, 7)) is not zero.

This equations look as follows:

a Qw v a v cw a v w aQpLwcv
cray B 858, — cray B8, 6, + crapf8hé, — cray BréL6,
anv w a w cv
+ 208 BEL8Y — caal BLOLY + eaal BLSLSY — caatBRELES
+ c3al B 6a8Y — csal Bubléy + caah B646, — caay Bu8 8y

+..
+62(ca3aB BP 8968 — coaal LYY + cazal 18N — casab BIES})
+ 68(cos0P BYEL6Y — caaal BLELEY + caual BSI6Y — craad BIEVEY)
+ dyaBRSESY — dral BE6L6Y + dialfRalEY — dial BrEey
+ dya BA8RSY — dyod BE8Y6Y + dya} fR626Y — dyold B8}
+..

+ 82(dzacy BREL8Y — dagal BR6, 6} + daacy BT8L6Y — d2sal 376, 65)
=0
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The general solution is:

Cl =C=C=C =¢C1=C2~=
= €13 = C15 = C17 = C19 = C21 = C23 =
=di=dy;=dr=dg=dyy =diz =
=dis=dis=dir=dig=da1 =dz3 =0
c3 =dyg = —dgy = —cyo
d3 =cg = —cy = —dyo
Cs, C¢, C14, C16, C18, C20, C22, C24,

ds, ds, dia, dis, dis, dao, d22, dog, are arbitrary.

We can summarize:

3.4 Theorem. Any bilinear secondary invariant mapping
TiAxT:A— B

with respect to the commutator and {0 € R"}can be obtained as a linear combination
of the following secondary invariants.
(1) Nijenhuis tensors: n;?o;‘,—n;o:j—n;poﬁn;?ke;, {7,k} = {b,c}, {n,0} = {a, B}
which are not invariants;
(2) 8312674, {4, k} = {b,¢}, {n,8} = {a, B} which are not invariants, too;
@3) 8ink6s,, {i,1} = {a,p}, {4, k,r} = {b,c,p}, {n,6} = {a,5}.
Consequently, they create a vector space, the base of which is
ap By — o5 Bl — ag,BE + o} By,
agpﬂlf - agbﬁ; - O‘Ic’ﬂfp + a;ﬂfw

a. P39 a 9 QP a_PA9 a 9 3p
6baq:6pc’ 6bapc q° 6caq16pb7 5capb13q’

anp ap P QRa P ga

abﬁpu acﬂpba apcﬂln apbﬂcv
a_pnaq a_pnaq a_PAaq a_pa9
6,,ac,3qp, SyabBl., bcoyBl,, Scap 760
a9 B3P a1 3P a9 3P a9 3P
Jbaqpﬂc) 6baqc13p7.' 6caqpﬂb» 6caqbﬂp7

3.5 To formulate our theorem in terms of operators we introduce some useful notations.
Let N = (N;'k) : C®F%X — C*FpX denote the value of the Nijenhuis operator
(Nijenhuis tensor) on the manifold X, D the differential, and C the contraction (C (N) =
(V) C((ad)) = (o). pr; are the cartesian projections and 1d is the section with value id
in every point. ez is the exchange on a cartesian product.
The value of operators on fields = (aj,...) and 8 = (f},...) which in coordinates
look like 3.4.1 can be described as

N(o,B) or N(B,a)
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The value of operators on fields & = (a%,...) and 8 = (§;,...) which in coordinates
look like 3.4.3 can be described as

id®DoC(a), DoC(a)®id, 1d®DoC(B), DoC(B)®:id
multiplying by C(a)
B®(DoC(a)), (DoC(a))®B, a®(DoC(B)), (DoC(B))®ac
id®B(DoC(a)), B(DoC(a))®id, id®a(DoC(B)), a(DoC(B))®id

As regards 3.4.2 we note that C o N(a, 8) + (D o C(a)) = (Bia¥;) ... consequently
the value of operators on fields o = (a;-, ...)and g = (ﬁj‘f, ... ) which in coordinates look
like 3.4.2 can be replaced by

id®CoN(a,8), CoN(a,f)®id, id®CoN(B,a), CoN(Ba)®:id.

We can finish with a theorem:

3.6 Corollary. The only bilinear natural operators transforming commuting pairs
of tensor fields of type (1,1) to fields of type (2,1) on the same manifold are

F, =N .

F; =id® D o C(pr1(-)) - C(pra(-))
F3 =pr2(—) ® (D o C(pr1(-)))

Fy =id ® pra(=) o (D o C(pri(-)))

Fy =id® C o N(pr1(~), pra(-))

w

the operators

F;oex
EX(Fy)
. EX(F;oezx)

where EX(F)(z) = F(z) o ex, and ez is transposition on cartesian product.

(but let us note that for i=1 we obtain only two linearly independent mappings,
because N(a,) o ez = —N(B,a)), and the linear combinations of the previous 18
linearly independent operators.

Let us note that the only secondary invariants which are not invariant are values
of natural operations on Nienhuis tensor.
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