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REND1C0NTI DEL CIRCOLO MATEMATICO DI PALERMO 
Série II, Suppl. 43 (1996), pp. 57-76 

NOTES ON CONFORMAL DIFFERENTIAL GEOMETRY 

Michael Eastwood* 

These notes are in no way meant to be comprehensive, neither in treatment nor in 
references to the extensive literature. They are merely meant as an introduction to a 
small selection of topics in the field. They were presented as a series of four lectures at 
the 15 th Winter School on Geometry and Physics, Srni, Czech Republic, January 1995. 

Lecture One 

Recall that a Riemannian manifold M is really a pair (M,g) consisting of a smooth 
manifold M and a metric g, a smooth and everywhere positive definite section of 
Q 2 T*M, the symmetric tensor product of the cotangent bundle. Following standard 
practise, we shall usually write gab instead of g and, more generally, we shall adorn 
tensors with upper and lower indices in correspondence with the tangent or cotangent 
bundle. We shall also use the Einstein summation convention to denote the natural 
pairing of vectors and covectors. Thus, Va denotes a tangent vector or a vector field 
and gabVaVb denotes the square of its length with respect to g. We shall often 'raise 
and lower indices' without comment—if Va is a vector field then Va = gabVb is the 
corresponding 1-form. (More precisely, this is Penrose's abstract index notation—see 
[19] for details.) 

A conformal manifold M is a pair (M, [g]) where [g] is a Riemannian metric defined 
only up to scale. In other words, [g] is a section of R(Q2T*M), the bundle of rays 
in O 2 T*M such that a representative g is positive definite. In yet other words, 
a conformal manifold is an equivalence class of Riemannian manifolds where two 
metrics gah and g^ are said to be equivalent if gab is a multiple of gab. In this case 
it is convenient to write ga\, = ft2ga& for some smooth function fi. On a conformal 
manifold, one can measure angles between vectors but not lengths. 

This paper is in final form and no version of it will be submitted for publication elsewhere. 
* ARC Senior Research Fellow, University of Adelaide 
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For example, in two dimensions an oriented conformal manifold is precisely a Riemann 
surface, i.e. a one-dimensional complex manifold. Certainly, if M is a Riemann surface 
with local coordinate z = x+iy, then dx2+dy2 is a Riemannian metric and if w = u+iv 

is another, then the Cauchy Riemann equations 

дu дv дu дv 

дx дy дy дx 

imply 

du2 + dv2 = (^dx + ^dyj + ^ Љ + gdy) 

(dx2 + dy2). 
дu 

дx 

дv 

дx 

Conversely, there is a theorem of Korn and Lichtenstein which says that any Rieman­
nian metric in two dimensions may be written locally in the form 

n2(dx2 + dy2) 

for some smooth function ft and suitable coordinates (x, y) (chosen compatible with 
the orientation). Taking z = x + iy defines a local complex coordinate and any 
other choice is holomorphically related. Indeed, the Cauchy Riemann equations are 
precisely that the Jacobian matrix 

du/dx du/dy 

dv/dx dv/dy 

is proportional to an orthogonal one. 

Notice that a conformal manifold in two dimensions has no local invariants—all 
Riemann surfaces are locally indistinguishable. The only local invariant of a two-
dimensional Riemannian manifold is its scalar curvature and this has been eliminated 
by the freedom to scale the metric. In higher dimensions it is reasonable to expect 
some of the rigidity of Riemannian geometry. This is indeed the case and evidence in 
its favour can be found as follows. 

Firstly, let is consider rigid motions of R n , i.e. the connected component of the group 

of isometries of R n with its usual metric. Of course, this is well-known to be generated 

by translations and rotations. One way of seeing this is to consider an infinitesimal 

motion, i.e. a vector field Va on R n with the property that 

dVa 

Va

b = -g-j e so(n), i.e. Vab = V[ab] 

where square brackets around indices denote taking the skew part. Consider now 

dVa 

v\ dxbdxc e so(n)^l\ i.e. Vabc = V[ab]c and K&c = Va(bc) 
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where round brackets denote the symmetric part. However, this first prolongation 
5o(n)^ vanishes: 

Vabc = — Vbac = —Vbca = Vcba = Vcab = ~ Kcfc = ~ Vabc. ( l ) 

By integration the result concerning rigid motions follows. There are some observa­
tions to be made. 

• The calculation (1) is the principal ingredient in constructing the Levi-Civita 
connection on a Riemannian manifold. 

• The flat model of Riemannian geometry is Rn as a homogeneous space 

_ Rn x SO(n) _ rigid motions 

SO(n) stabiliser of a point ' 

• As an alternative proof we could show that geodesies (i.e. straight lines with unit 
speed parameterisation) are preserved by isometries and, by firing out geodesies, 
conclude that an isometry fixing a point to first order is necessarily the identity. 

Let us try the same technique for the conformal case in an attempt to identify the 
conformal motions of Rn . An infinitesimal motion is a vector field satisfying 

dVa 

Va
b = -TTJ € co(n), i.e. V^b) = \gab-

Thus, 

Va
bc e co(n)(1), i.e. V(ab)c = Kgab and Vabc = Va(bc). 

This first prolongation co(n)(1) is no longer zero. In fact, 

\a *+ Vabc = \c9ab + \b9ac ~ \a9bc 

identifies co(n)(1) with Rn . However, 

Va
bcd € co(n)(2), i.e. V(ab)cd = Kdgab and Vabcd = Va(bcd) 

and this second prolongation co(n)(2) vanishes if the dimension n is greater than 2: 

n\cd = g^Vabcd = g^Vacbd = 9ab(2V{ac)bd-VCabd) 

= gab(2\hdgac - Vcdab) = 2\cd-g
ahVcdab. 

So, 
ngcd\cd = 2gcd\cd - gabgcd\abgcd = (2- n)gcd\cd 

and \cd is trace-free. Since n 7-- 2, then 

(2 — n)\cd = ga Vcdab 
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implies that the right hand side is symmetric in cd in which case 

(2 - n)\cd = ga V(cd)ab = ga Kbgcd 

which implies that \cd is pure trace. Now V(a\>)cd = 0 and we find that Vabcd is zero by 
applying (1) on the first three indices. 

We may conclude that a conformal motion of R n for n > 3 which fixes the origin to 
second order is necessarily the identity. More precisely, we may identify the group P 
of conformal motions fixing the identity as matrices of the form 

A"1 

ra 

{ -\rara/2 

acting on xa G R n by 

0 0 
m a 6 0 

-Ar a ra a 6 A 

foг A > 0, ma

ь Є SO(n), r° € (2) 

Ama
hx

b - 2xcxcr
a 

4A — A\ram
a\>xb + \xcxcr

brb 

It is a good exercise to check that this really is conformal, i.e. that its derivative 
is everywhere proportional to an orthogonal matrix. Notice that the denominator 
vanishes when xb = 2mcr

c jrara. On the other hand, this formula is forced by the 
prolongation argument. In order to allow non-zero r we are therefore obliged to 
compactify Rn with a single point to obtain the sphere Sn = Rn U {oo}. Further 
reasoning along these lines identifies the full group of conformal motions of the round 
sphere Sn (conformally containing Euclidean Rn via stereographic projection) as the 
identity connected component G of SO(n + 1,1). The sphere is realised as the space 
of future pointing null rays 

Sn = space 
of generators 

in Rn+1 ,1 . The form of P as above is obtained by taking G to preserve the form 

2x 0 £n+i + xi2 + x22 H %n 

and the basepoint of Sn to be represented by the null vector 

/ n \ 0 
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In summary, the flat model of conformal geometry is 

Sn = G/P 

for G = S0 0 (n + 1,1) and P a suitable parabolic subgroup. The other two observations 
in the Riemannian case will turn out to have analogues in the conformal case. We 
shall find an invariant connection (but not on the tangent bundle). In fact we shall 
find a somewhat better differential operator (originally found by T.Y. Thomas). We 
shall also find analogues of geodesies in the conformal case. They are known as 
conformal circles because in the flat case they coincide with the round circles on Sn 

(equipped with their standard projective parameterisations). Certainly, these circles 
are preserved by G. 

Lecture Two 

So much for the flat case. To proceed in general, the naive approach is to work with 
a metric in the conformal class and then see how things change when the metric 
is scaled. If gab is replaced by gab = tt2gab, then the Levi-Civita connection V a , is 
replaced by the connection V a acting on 1-forms according to 

Vavb = Vaub - Yau>b - Ybu>a + Tcucgab 

where T a = n _ 1 V a f l . Indeed, this formula surely defines a torsion-free connection 
and induces 

Vau>6c = Vau;&c - 2Taa>6c - Tbuac - Tcwba + Tdudcgab + Tdubdgac 

on contravariant 2-tensors ujab, clearly annihilating gab. Correspondingly, the new 
connection on vector fields is 

vav
b = vav

b + rav
b - rbva + rcv

c6a
b 

where 6a
b is the Kronecker delta. It is convenient to introduce a line bundle £[1] on 

M as follows. If a metric gab in the conformal class is chosen, then £[1] is identified 
with the trivial bundle £. Equivalently, a local section <j> of £[1] may be regarded as a 
function, say / . If, however, gab is replaced by gab = £l2gab, then the function / repres­
enting <f> with respect to the metric gab, is given by / = ilf. The wth power of £[1] will 
be denoted by £[w] and its sections called conformally weighted functions of weight w. 
Such a section may be represented by a function scaling according to / = Viw f. We 
shall write £a and £a for the tangent and cotangent bundle respectively. Other tensor 
bundles will be denoted by adorning £ with the corresponding indices. The conformal 
metric may be regarded as an invariantly defined section of £a&[2]. Raising and lower­
ing indices defines a canonical isomorphism of £a[w] with £a[w + 2] for any weight w. 
Choosing a metric induces a connection on £[w] which transforms according to 

va</> = va4> + wTa(j> 
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under scaling of the metric. 

The Riemann curvature is defined by 

(V a V 6 - V 6 V a )V c = Rab

cdVd 

and transforms by 

Rabcd = 0 (Rabcd " -̂ ac<7&d + ---&c<7ad — ^bddac + Sad<7&c) (3) 

under scaling of the metric where 

E a 6 = V a T 6 — T a T 6 + ± T c T c # a 6 . 

In particular, the variation is entirely through traces. The totally trace-free part Cabcd 
of Rabcd is therefore invariant and (3) suggests that we write the remaining part in 
terms of a symmetric tensor P a 6 according to 

Rabcd = Cabcd + Pacg6d ~ P&cgad + P&d<7ac ~ Padg&c-

Then the Weyl curvature Cabcd has weight 2 and is conformally invariant whilst the 
Rho-tensor P a 6 has weight 0 and (3) implies that 

Pa& = Pa6 — V a T 6 + T a T 6 — ^TcT
cgab' 

The Rho-tensor is a trace-adjusted multiple of the Ricci tensor Rbd = Rab
ad'-

1 („ R 
Paб = 

where R = Ra

a is the scalar curvature. 

Rab + 
2(1 

— : g a b ) 
n) ) 

Without further ado, we can now introduce the conformally invariant connection 
alluded to earlier. Further details and motivation can be found in [3]. It is a connection 
on a vector bundle £A which we now define. In the presence of a metric #a6 in the 
conformal class, it may be identified as a direct sum 

£A = £[\\@£a[-\}®£[-\} 

but if gab -S replaced by ^a6 = fi2^a6, then a local section (cr, na,p) is identified with 
its counterpart (5, / i a ,p) in the new scale according to 

Џa 

9 

џa + T V 
[ p-Tьłлb-k

2ГbT
ьcт 

It is easy to check that this is an equivalence relation and hence that the bundle 
£A is well-defined. We shall use the term tractor for tensor powers of this bundle 
and their sections (by analogy with the term tensor in Riemannian geomtry). The 
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structure group of this bundle is the group P encountered in the discussion of the 
flat case. Whereas the tractor bundle corresponds to the standard representation of 
G = S0 0 (n +-1,1) restricted to P, the spin representation (if n is odd) or one of the 
two spin representations (if n is even) induces the local twistor bundles introduced 
in four dimensions by Penrose (see [20]). Recall that the flat model of conformal 
geometry is the homogeneous space G/P. The tractor bundle £A in this case is the 
homogeneous bundle induced by restricting the defining representation of G on R n + 2 

to the subgroup P. It is therefore simply a product Sn x Rn + 2 . 

For a given metric, the tractor connection on £A is defined by 

a } [ ^b<7 - p-b 
v 6 pa = v6 / i

a + oVp + p6 v 

p ) { Vbp-?bap
a 

This definition is conformally invariant, as can be verified by direct calculation: 

V6£ - pb 
G 

fia 

p 

Vbfi
a+Sb

ap + Pb
aa 

Vbp-Pbafi
a 

V6cт - (џь + Гba) 
Vb(џa + TV) + Sb

a(p - Гcџ
c - \ГcГ

ca) + (Pb

a - VbГ
a + T 6 T a - \ГcГ

c5b

a)a 
Vb(p - Гcџ

c - ІT C TV) - (P 6 a - V 6 T a + T 6 T a - \ГcГ
cgЬa)(џa + T V ) 

(V6 + T 6 )<т-( M 6 + T6<г) 
Vb(џa + T V ) - Гa(џь + Гьa) + Гc(џc + Гca)5b

a 

+Sb

a(p - Гcџ
c - T C TV) + (P 6

a - V 6T" + T6T
a)cт 

(V6 - T 6)(p - Гcџ
c - \ГcГ

ca) - (P 6 a - V 6 T a + T 6 T a - \ГcГ
cgba)(џa + T V ) J 

V6cт - џb 

Vbџ
a + ГaV„a - Гaџ„ + 5ь

aa + P 6 V 
V6p - ГcVbџ

c - ţГcГ
cVьa - ГbP - Pbaџ

a - P 6 a T V + | T C T ^ 6 J 

V6<T - pb 

V6/xa + Vp-f P 6 V 

V 6p - Pbap
a 

This definition is due to T.Y. Thomas [23]. It is equivalent to E. Cartan's conformal 
connection on the associated frame bundle. Thomas's discovery was slightly later 
than though independent of Cartan's. The connection induced on the bundle of local 
twistors is called local twistor transport (see [8, 20] for explicit formulae in dimension 
four). 

In the flat case M = Sn = G/P, the tractor connection is the flat connection on the 
product bundle Sn x R n + 2 . In general, the curvature is given by 

' a ) ( 0 0 0 } ( a 
(V a V 6 -V 6 V a ) pc = 2V [ aP6 ]

c Cab

c

d 0 /ic 

P ) { 0 -2V [ aP6 ] f i 0 J [ p 
(4) 
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For n > 4, the Bianchi identity V[aRbc]
d

€ = 0 implies that 

2 V[ .-V = ^F'CJi 

so the tractor curvature is equivalent to the Weyl curvature. When n = 3, the Weyl 
curvature vanishes (by symmetry considerations) and so we may conclude that V[aP6]c 

is conformally invariant. This is known as the Cotton-York tensor. In any case, it is 
straightforward to deduce that these tensors are precisely the obstruction to a given 
conformal manifold being locally equivalent to the flat model. 

The tractor bundle carries a non-degenerate symmetric form, the tractor metric, a 
Lorentzian metric characterised by 

\\(cr,fla,p)\\2 = 2crp + fl
ana. 

It is conformally invariant and is preserved by the tractor connection. In the flat case 
it coincides with the Lorentzian metric on R""1"1'1. 

We are now in a position to define the conformal analogues of geodesies, the so-called 
conformal circles. Though it is possible to proceed directly (as in [2]), it is convenient 
to use tractors. More details can be found in [3]. 

Suppose 7 is a smooth curve in M parameterised by t, a smooth function on 7 with 
nowhere-vanishing derivative. This determines the velocity vector Ua along 7 by 
requiring that it be tangent to 7 and that UaVat = 1. Define u = \JUaUa, a function 
of conformal weight 1. Define the acceleration vector Ab = UaVaU

6. (A unit speed 
geodesic is defined by u = 1 and Ab = 0.) Of course, the acceleration vector is not 
conformally invariant (in fact ,46 = ,46 — u2Tb + 2(UCTC)U6). Define the velocity 
tractor UB and acceleration tractor AB by 

UB = uawa 

0 
0 

1 , - 1 

and AB = UaVaU
B. 

These are manifestly conformally invariant definitions. Calculation yields 

\\A\\2 = 2u~2UbU
aVaA

b + 3u~2AbA
b - 6u~4(UbA

b)2 + 2Pa6UaU6, 

automatically invariant! Its vanishing may be regarded as a 3 r d order ordinary dif­
ferential equation along 7 for the function t. This gives a preferred family of local 
parameterisations of 7 which we call projective. If s and t are projective parameters, 
then the third order ODE relating them reduces to the Schwarzian 

dsd3s nfd
2s\ rt at + b 

2-T- -77 — 3 -T-T = 0 whence s = m-Jdtdt3 \dt2) ct + d' 

The curve 7 is called a projectively parameterised conformal circle if and only if 

||>l||2-=-0 and UaVaA
B = 0. 



NOTES ON CONFORMAL DIFFERENTIAL GEOMETRY 65 

Certainly, this is a conformally invariant system. In fact, it reduces to a third order 
ODE with leading term UaVaA

b. See [3] for more details. The upshot of this dis­
cussion is that for every velocity and acceleration vector at a point, there is a unique 
parameterised conformal circle with these as initial conditions. In the flat case, it 
may be verified that these are the round circles with standard projective paramet-
erisations. As indicated earlier, this gives an alternative approach to the conformal 
motions of R n . The details are left to the reader. 

Lecture Three 

Recall from Lecture One, that the flat model of conformal geometry is the sphere Sn as 
a homogeneous space G/P where G = SO0(n + 1,1) and P is the subgroup consisting 
of matrices of the form (2). It is an exercise in the theory of Verma modules to classify 
the G-invariant differential operators on Sn and this lecture will mostly be devoted 
to indicating this theory and how it applies. Of course, it is important to understand 
the flat model, else we cannot hope to understand the curved, i.e. general, case. More 
importantly, it will turn out that various elements of the flat theory generalise to the 
curved case. 

For the following discussion, G and P can be arbitrary Lie groups. A homogeneous 
vector bundle on G/P is one whose total space is equipped with an action of G which 
is compatible with the action on G/P and which is linear on the fibres. Such a bundle 
may be reconstructed from its fibre over the identity coset. In other words, suppose 

p : P — • Aut(E) 

is a finite-dimensional representation of P. Then 

G x E 
E = GxPE = 

(9,e)~ І9P,p(P~l)e) 

is homogeneous and this provides a 1-1 correspondence between the finite dimen­
sional representations of P and the homogeneous vector bundles on G/P. (For more 
details, see, for example, [17].) For an arbitrary smooth vector bundle B o n a smooth 
manifold, one has the jet bundles 

J°0£ _» » j3E _» j2E _» jiE _» E 

where J°°E is defined as the inverse limit (of course, allowing an infinite-dimensional 
vector bundle in this instance). For a homogeneous vector bundle, there is the equi­
valent diagram of P-modules 

j^E _» . J 3 E - H J 2 E - ^ JXE -» E. 

A linear differential operator of order < k between arbitrary vector bundles E and 
F may be defined (see, for example, [22]) as a homomorphism of vector bundles 
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D : JkE —> F . In the homogeneous case, the G-invariant such operators correspond 
to homomorphisms of P-modules D : J*E -> F. 

For E, a representation of P, define the Verma module V(E) to be the fl-module 

il(fl) ® E* 
í l ( 0 ) ®p E* 55 

il(fl)-submodule generated by {p ® / — 1 ® p*(p)f} 

where p* is the derivative of the dual representation, p is the Lie algebra of P , and 
fl is the Lie algebra of G with universal enveloping algebra il(fl). (Warning: this is 
somewhat non-standard terminology—see the parenthetical remark starting at the 
bottom of this page. The term induced module is also used (see, for example, [25]).) 
In fact, P also acts on V(E) in a compatible way. In the homogeneous case observe 
that the action of G on E induces an action of fl on J°°E. It is straightforward to 
verify that there is a natural isomorphism V(E)* = J°°E as (fl, P)-modules. The 
universal enveloping algebra il(fl) is filtered by degree 

R = ilo(g) C il ,(g) C • • • C it_(g) C Hfc+1(g) C • • • C i l ( 0 ) 

with corresponding gradings 
UM -oV 

This induces a filtration of the Verma module 

R = V0(E) C Vi(E) C • • • C Vk(E) C Vk+X(E) C • • • C V(E) 

which is preserved by the action of P . The corresponding gradings may be viewed as 
an exact sequences of P-modules 

o —* v__,(E) —• vk(E) —+ o*(g/p) ® E* —» 0 

whose dual induces the jet exact sequence (see, for example, [22]) 

0 —> QkT*M ®E—+JkE-^ Jk^E —> 0. 

In this way, Verma modules build the P-modules J*E which arise in constructing 
G-invariant linear differential operators. However, it is usually more convenient to 
use the Verma modules as a whole—a G-invariant linear differential operator between 
the bundles on G/P induced from representations E and F is equivalent to a homo-
morphism of (fl, P)-modules 

V(E) <— V(F). 

This is easily shown from a geometric point of point; in representation theory, it is 
known as Frobenius reciprocity (see, for example, [25]). 

To proceed further it is necessary to be more specific concerning G, P , and E. Mat­
ters are especially congenial if G is semisimple, P a parabolic subgroup, and E an 
irreducible representation. (The term generalised Verma module is often used for this 
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case (see, for example, [18]) with the term Verma module reserved for the case when 
P is Borel (in which case E, being irreducible, is necessarily one-dimensional).) 

It is illuminating to consider the following simple example: 

G = SL(2,R) P = | í J д ^ ì s.t. Л > 0, г Є RІ E = R„ =: 

with an element of P of the form shown acting on R w as multiplication by X~w for 
some w Є R. The corresponding homogeneous bundle is denoted 

£(w) (as in T.N. Bailey's lectures [1]). 

To investigate the Verma module V(w), introduce the standard generators of sl(2, R): 

x = [ l í ) y = ( î 2 ) л = ( à - 1 ] -
We may use the standard commutation relations to put elements of il(s[(2, R)) into a 
standard order (i.e. apply the Poincaré-Birkhoff-Witt procedure) and hence identify 

V(w) = Щy]a where xa = 0 and ha = wa. 

In other words, the action of y on this polynomial algebra is by left multiplication, 
whilst the actions of x and h aгe obtained by repeated commutation to bring them to 
the right whereupon they act on a as specified. Thus, V(w) is a highest weight module 
generated by a. The following calculations are typical. Consider the case w = 1. Then 

xya = [x, y]a + yxa = ha + 0 = a 

hya = [h, y]a + yha = —2ya + ya = —ya 

xy2a = [x, y]ya + yxya = hya + ya = —ya + ya = 0 

hy2a = [h, y]ya + yhya = -2y2a - y2a = -Зy2a. 

This shows that y2a is a maximal (sometimes called singular) weight vector in V(l) 
(i.e. an eigenvector for h that is annihilated by y). Apart from a itself, it is easily 
verified by similar calculations, that, up to scale, there aгe no other maximal weight 
vectors. As the weight of y2a is —3, it follows that there is a homomorphism of Verma 
modules 

V(-3) = R[y]ß-лR[y]a = V(l) 

with ß i-> y2a (and, therefore, f(y)ß »--> У2/(y)«)- Equivalently, there is a second 
order linear diŕferential operator 

ð2 : £(1) —> 5 ( - 3 ) . 

More generally, these calculations show that, up to scale, the only non-trivial linear 
differential operators on the circle which are projecłively invariant (i.e. invariant under 
the action of SL(2, R)), are 

ð w + 1 : £(w) —> £(-w - 2) for w Є Z > 0 
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where 9* is a fcfch-order differential operator (cf. [9] for the complex case). The non­
linear differential operators in this situation are the subject of [1]. The operator 
9 : £ —•> £(—2) is the exterior derivative. 

Leaving this example for the moment, it is useful to note how much of this applies 
in general, i.e. when G is semisimple, P parabolic, and E irreducible. Certainly, 
the search for G-invariant linear differential operators between irreducible bundles 
on G/P, is equivalent to the search for maximal weight vectors in 17(E). When 
G/P = 5 n , the flat model of conformal geometry, these Verma modules are of the 
form 

y ( E ) = R [ y i , y 2 , . . . , y „ ] ® E * 

where yi, y 2 , . . . , y„ are 'lowering' operators in 0 corresponding to the n positions in the 
top row opposite the vector ra in (2). The representation E* of P , being irreducible, 
is generated by a highest weight vector a, unique up to scale. The entire Verma 
module is then generated by applying lowering operators from 0 to a (in particular, 
the operators yi,y2,. •. ,y„, which together with lowering operators from p, span the 
lowering operators of 0). In this generality, the search for maximal weight vectors 
in 17(E) is not so amenable to direct computation. Instead, the Jantzen-Zuckerman 
translation functor (see, for example, [25]) avoids these calculations and also provides 
an inductive method of constructing the whole family of operators fronrtheir simplest 
members (such as the exterior derivatives). They key to the translation functor is to 
consider the action of the centre of il(g). 

Returning to our example, the centre of il(s((2, R)) contains the element 

C = h2 + Ayx + 2h 

(and, in fact, consists of polynomials in C). Applying C t o a G V(w) gives w(w + 2)a. 
Since V(w) is generated by a and C commutes with the action of 0, it follows that 
C acts on all of V(w) by multiplication by w(w + 2). This already restricts the 
possibilities for non-trivial homomorphisms V(w') —> V(w) for, in this case, clearly 
one must have w'(w' + 2) = w(w + 2). The action of C also plays a role as follows. 
The standard representation of SL(2,R) on R2 gives rise to a Verma module V(R2). 
Generally, if p : G —> Aut(E) is restricted to P , then the corresponding homogeneous 
vector bundle E is canonically trivial: 

E = G/P x E 

I 
G/P. 

Thus, on the level of Verma modules, 

V(R2) = V(0) ® (R2)* 

and, more generally, 
V(R2®Rw) = V(w)®(R2)\ 
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The short exact sequence of P-modules 

0 -> R^.x —> R2 ® Rw —> Rw + 1 -> 0 

gives rise to a short exact sequence of g-modules 

0 f- V(w - 1) <— V(tu) ® (R2)* 4— V(u; + 1 ) 4 - 0 . 

For it; ^ — 1, notice that C acts by different scalars on V(w — 1) and V(w + 1). In 
these cases, therefore, V(w) ® (R2)* decomposes as a 0-module into a direct sum of 
the two eigenspaces of C. Bearing in mind that a homomorphism of Verma modules 
corresponds to a G-invariant differential operator, this shows that there are invariant 
differential splittings, for example 

0 -> £(-1) ^ £ A ^ £(l) -+ 0 
DA DA 

where £A is the trivial bundle with R2 as fibre. In homogeneous coordinates, 

DA = -d/dxA. 

The exterior derivative 9 : £ —> £(—2) also acts on this trivial bundle to give the 
diagram 

* ( - i ) -> £A ^ £{i) . 
| 8 DA 

* ( - 3 ) ^ eA(-2) - > * ( - - • ) • 
DA 

The composition DA o 9 o DA is then 92 : £(\) —> £(—3). Notice that it has been 
constructed in a manifestly invariant manner. Iterating this procedure generates all 
the invariant operators 9* inductively. 

In the flat conformal case, there are similar invariant differential splittings of the 
tractor bundle. Their existence is guaranteed abstractly by analysing the action 
of the centre of il(g) (see [8] for corresponding splittings of the twistor bundles in 
the four-dimensional case). This analysis not only gives a complete classification of 
the conformally invariant linear differential operators between irreducible conformally 
weighted tensor bundles in the flat case, but also gives, via the translation functor, a 
way of building families of invariant operators from their simplest members. For the 
purposes of this article, the results of this classification are not so important (see, for 
example, [15] or [8] for the four-dimensional case, [4] for the general case, and [7] for 
generalisations). 

The rest of this article is concerned with the extent to which the translation functor, 
as a method for generating invariant operators, extends to the curved case. The 
main point is that the differential splittings mentioned above exist in the curved case 
too. In fact, the basic examples were already written down in 1932 by Thomas [24]. 
As motivation, he noted that the tractor connection is an inadequate substitute for 
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the Levi-Civita connection. In the Riemannian case one can apply the Levi-Civita 
connection repeatedly. Indeed, in some well-defined sense, which we won't go into 
here, this captures all the invariant calculus that is present on a Riemannian manifold. 
In the conformal case, having formed VbV

A for a tractor field VA, there is no invariant 
connection on the cotangent bundle so one is at a loss for a second derivative. Thomas 

£B[w-l)hy suggested the following replacement. Define DB : £[w 

DBf = 
w(n + 2w- 2 ) / 
(n + 2w - 2 )V 6 / 

(Д - wP)f 

where A denotes the Laplacian — V a V a and P = P a

a , a multiple of the scalar 
curvature. As usual, this definition is written with respect to a particular choice 
of metric in the conformal class. It is, however, conformally invariant. To see this, 
consider how the Laplacian changes under scaling of the metric gab i-> gab = U2gab. 

V 6 V a / = Vb(Vaf + wTaf) 

= V t ( V 0 / + ti;T 0/) + ( u ; - l ) T i ( V 0 / + «;T a/) (5) 
- T a ( V 6 / + uiT t /) + T C (V C / + wtj)gab. 

Thus, 

V a V a / = Va(Vaf + wTaf) + (n + w-2)Ta(Vaf + wTaf) 

= V a V a / + tD(V a T a )/ + (n + 2w- 2 ) T a V a / + w(n + w - 2)TaTaf 

= V a V a / + (n + 2w- 2 ) T a V a / + <D(VaTa + (n + w - 2 ) T a T a ) / . 

On the other hand, 

P = p _ V a T a + ( l - f ) T a T a . 

Hence, 

(A - wP)f = (A - wP)f -(n + 2w- 2 )T 6 V 6 / - \ThT
bw(n + 2w- 2 ) / 

whilst 

(n + 2w - 2)V 6 / = (n + 2w - 2)V 6 / + Tbw(n + 2w- 2)/. 

These are exactly the transformations of a tractor, as required. 

Notice that the argument is unaffected if / is replaced by a tractor field of conformal 
weight w (where, of course, the Laplacian is replaced by the tractor Laplacian (an 
explicit formula for which is quite complicated)). In other words, the operator DB : 
£A[w] —> £BA[w — 1] makes perfectly good sense. We can continue in this way to form 

DtSyA D^DVVA . . . 

for any conformally weighted tractor field VA. 

The /^-operator combines several features of conformal geometry. If w = 0, then 
the first component of DBVA vanishes and so the second component is conformally 
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invariant. This is the tractor connection. If w = 1 — | , then both the first and second 
components vanish. The third component is therefore conformally invariant. In other 
words, the differential operator 

/ -> (A - wP)f = (A + 4 ^ y A ) / (6) 

is conformally invariant when acting on functions or tractor fields of weight 1 — §• In 
the flat model, DA is closely related to differentiation with respect to the coordinates 
on Rn + 2 . Indeed, this aspect may be exploited in the curved case with DA finding 
interpretation in the ambient metric construction of Fefferman and Graham [10]. 

Lecture Four 

The investigation of invariant differential operators on a conformal manifold is an act­
ive area of research (see, for example, [5, 6, 15, 16, 21, 26]). The conformally invariant 
Laplacian or Yamabe operator (6) is an example of such an operator. More gener­
ally, by a conformally invariant differential operator, we shall mean any polynomial 
expression in the Levi-Civita connection and its curvature acting between conform­
ally weighted tensor bundles, which is unchanged when the metric is scaled. Some 
examples should suffice to make clear what is meant here. The exterior derivative 

V a : £[b...d\ — • £[ab-d\ 

is certainly invariant. Consider the operator 

£[1] —> trace free part of £(a6)[l] 
w UJ (7) 
/ •—> V ( a V 6 ) / + P a 6 / ~ ^ a 6 ( V c V c / + P / ) . 

From (5) 

whilst 

V ( a V 6 ) / = V ( a V 6 ) / + (V ( oT6 ) - T a T 6 ) / + trace terms 

Paб " £P<7a6 = Paб " ţ?9aЪ " V ( a T 6 ) + T a T 6 . 

The operator (7) is therefore invariant. A more exotic invariant operator is given by 

/ t—> totally trace free part of (V ( a V 6 V c ) / + 4 P ( a 6 V c ) / + 2[V ( a P 6 c ) ]/) 

acting on conformally weighted functions of weight 2. In fact, all these operators are 
strongly invariant in the sense that they are also invariant when acting on tractor fields 
rather than just scalar functions. This is because the transformations under scaling of 
the metric simply do not distinguish between pure tensors and tensor fields coupled 
to the tractor bundle. However, it is not the case that all invariant operators are 
strongly invariant. Consider, for example, the operator L : £ -» £[—4] in dimension 
four given by 

Lf = V6[V6Va + 4P6° - 2Pø6 a]V a / . (8) 
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Calculation yields 

.£/ = .£/ + 2T6Va(VaV6 - V6Va)f + 2T6(VaV6 - V6Va)Vaf - 2 [(VaV6 - V6Va)Ta] V6f. 

The curvature terms cancel so L is conformally invariant. However, if / is replaced 
by / c , a section of £c, then, writing fia6

C
D for the tractor curvature (cf. (4)), 

Lfc = Lfc + 4 T 6 f t a 6
c

D V ° / D + 2 T 6 [ V a f t a 6
c

D ] / D 

so conformal invariance is lost. 

We shall now describe a prpcedure (the curved translation principle) for generating 
conformally invariant operators. This procedure takes a strongly invariant operator 
and yields new strongly invariant operators from it. (We should remark, however, that 
though this is a generally applicable procedure, there are much more efficient means 
for calculating certain series of operators in particular cases (see, for example, [12]). To 
proceed, we need to generalise the L)-operator so that it acts on arbitrary conformally 
weighted irreducible tensor bundles. Thus, DB : T[w] -> FB[w — 1] for any irreducible 
tensor bundle T. The general existence of these operators follows from their existence 
in the flat case and this, as indicated in Lecture Three, follows from the general 
theory of Verma modules. The formulae become quite complicated. For example, 
DB : £a[w] —•> £a

B[w — 1] sends a conformally weighted 1-form 4>a of weight w to 

(n + 2w - 4)(n + w - 2)(w - 2)wcj)a 

(n + 2w- A)[(n + w- 2)(w - l)Vb<f>a + (n + w - 2)Va<j>b - w5a
bVc<f>c] 

(n + w- 2)(w - 1)(A - (w - l)P)4>a -(n- 2)[VaV6 + (n + w - 2)Pa6]06 

However, these operators only of second order. It is this fact that allows a general 
existence argument. In fact, there is an alternative approach using twistors instead 
of tractors where the corresponding operators are only of first order. This makes 
their existence more straightforward (cf. [11]). A general formula in four dimensions 
is given in [8]. As with DB : £[w] —> £B[w — 1], the same formulae with the tractor 
connection define conformally invariant operators when acting on tractor-valued con­
formally weighted tensors, i.e. these operators are strongly invariant. (Note, however, 
that there is some choice here—the same operator on tensors may be defined by two 
different formulae (when derivatives are commuted at the expense of curvature) in 
which case these different formulae may give rise to genuinely different operators on 
tractors. This is another reason why the twistor approach may be preferred.) 

There is also a series EbC : Tb[w] -> ^[w — 1] of strongly invariant first order 
operators for any irreducible tensor bundle T\>. For example, 

0 

(n + w- 2)фc 

k -vч 
for <f>a a local section of £a[w] and 
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0a6' 
0 

(n + w - 2)0O 

-V f c 0a6 
oř 

0 
(u; - 2)8a

ci>d
d 

-nVV. a& 

oř 

0 
(n + tu — 4)^ 0 

" V V a 6 

for ^a6 a local section of £a6[H and either symmetric trace free, pure-trace, oř skew, 
respectively. 

Finally, there is a series of zeroth order invariant operators FB : F[w] —> PB[w + 1] 
for any irreducible tensor bundle T whose definition is tautological: 

0 
0 

Dually, there are srongly invariant operators 

DB : TB[w) -> F[w - 1] Ebc : J^[w] -> Fb[w + 1] FB : fB[w] -> F[w + 1]. 

For example, 

(irreducible decomposition of £[a&]d[w + 1]) 
W 

Í
(W ~ 2) [fiabd + ^Z{gd[aHb)ee - V[abd]] 1 

+ § [V[a<76]d - VdC7a6] - ^ ^ [ a V V f e j e J 

+ {(n + w - 3)gd[a/jLb]e
e - gd[aVeab]e} 

+ {(lV + l)fl[abd] - V[a(76^} 

EdC : £[afc]CM 

Ol 

Aía6C 

The curved translation principle is obtained simply by combining these operators as 
follows. Suppose K : F[w] -> Q[wf] is a strongly invariant linear differential operátor 
for irreducible tensor bundles T and Q and conformal weights w and w1. Strong 
invariance implies that the samé formula defines: 

K : TB[w] -> gB[w'] 

which we may compose with the Z), F , and F-operators to obtain new strongly 
invariant operators between conformally weighted irreducible tensor bundles. The 
following example illustrates this proceduře. Let K be the exterior derivative from 
1-forms to 2-forms. Then K : Eb

c —> £[ab]
C is given by 

°b 
V>b 

Pb 

V[a<76] + H\ah] 

V[a / i6] c + S[a
cpb] + P[a

cab] 

V[ a / 0 6 ] - P c [ a / Í 6 ] C 
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We may compose with EaC : (trace-free part of £(a&)[l]) —r £&c given by 

Фab •-> 

0 
(n - IW 

-V r f V6d 

and Edc • £[a&]C —• (irreducible decomposition of £[a6]d[l]) to obtain, after some cal­
culation, 

(n - l)V[a^6]c ~ gC[aVdll>b]d, 

another strongly invariant operator, this one acting on symmetric trace-free tpab of 
weight 1. 

This is still first order. However, the translation principle can also increase the order 
by 1 (or decrease by 1 or more). For example, 

£[1] ^ ec ^ e c ^ (trace-free part of £(ab)[l]) 
W UJ 

/ ' • nV{aVb)f + nPabf + gabAf - gabPf 

yields a second order operator from a first order operator whilst 

£6[1] - ^ eb
c - ^ £ [a6]

c ^ (highest weight part of £[ab]d[l]) 
UJ 01 

<f>a ' > {n - l)Cabd
c<i>c 

yields a zeroth order operator from a first order operator. 

To summarize: The existence of the D and F'-operators derives from the flat case 
where this translation principle coincides with the Jantzen-Zuckerman translation 
functor. The resulting classification in the flat case yields various series of operators 
and the curved translation principle shows that most of these series admit 'curved 
analogues,' i.e. invariant operators with the same symbol as an invariant operator 
in the flat case. Indeed, in the odd-dimensional case, all the flat operators admit 
curved analogues and the even dimensional case most can be obtained by translating 
the exterior derivative. There are, however, some exceptions and in dimension four, 
Graham has shown that the flat invariant operator 

A3:£[l]-^£[-5] (9) 

has no curved analogue [13]. In the flat case, this operator may be obtained by 
translating (8) but, in the curved case, this breaks down since, as we observed, (8) is 
not strongly invariant. 



NOTES ON CONFORMAL DIFFERENTIAL GEOMETRY 75 

There are many questions yet to be answered. 

• Precisely which flat operators have curved analogues? There is a clear conjec­
ture, knowing where the curved translation principle breaks down but (9) is the 
only explicitly known example. 

• Further investigate the curved analogue of A n ' 2 : £ —•> £[—n] for n even. This 
operator has been shown to exist [14] but Branson has asked, for example, 
whether it can be chosen to be self-adjoint. 

• Find more explicit formulae for the curved analogues (cf. [6, 12]). (They are 
not, in general, unique). 

• Generalise this theory to other geometries: AHS (see [6]), CR, . . . 
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