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LIFTINGS OF COVARIANT (0,2)-TENSOR FIELDS TO
THE BUNDLE OF K-DIMENSIONAL 1-VELOCITIES

Miroslav Doupovec and Jan Kurek

Abstract. We introduce and study some liftings of (0, 2)-tensor fields on a manifold
M to the bundle T} M. Then we determine all first order natural R-linear operators
transforming (0, 2)-tensor fields to T{ M. Finally we classify first order natural op-
erators transforming symmetric (0, 2)-tensor fields on M into (0, 2)-tensor fields on

T} M.

1. INTRODUCTION

The bundle T} M = J(R¥, M) of all k-dimensional 1-velocities plays an important
role in differential geometry, especially in the analytical mechanics. In particular, for
k = 1 we obtain the classical tangent bundle TM = T} M and the linear frame bundle
FM =invJj(R™, M), m = dimM, is an open dense subset of T} M.

We shall use the concept of a natural operator, which can be considered as a
generalization of the concept of a geometrical construction, [6]. Using such a point of
view, Kowalski and Sekizawa determined all first order natural operators transforming
Riemannian metrics to the linear frame bundle FM, [7]. Further, Janyska has in [5]
classified first order natural operators from Riemannian metrics into 2—forms on the
tangent bundle TM. Moreover, the first author determined in [3] all first order natural
operators from general (0, 2)-tensor fields into (0,2)-tensor fields on TM.

In this paper we first study the classical linear liftings of (0, 2)-tensor fields to
the bundle T} M, namely the vertical and the complete lifts. Then we prove that if
k > 1, then there is no natural isomorphism between T} T*M and T*T{ M. Further
we introduce the antisymmetric lift and then some nonlinear liftings. Moreover, we
determine all first order natural R-linear operators transforming (0, 2)-tensor fields
on M into (0,2)-tensor fields on T} M. Finally we classify first order natural operators
transforming symmetric (0, 2)-tensor fields on M into (0,2)-tensor fields on T{ M.

All manifolds and maps are assumed to be infinitely differentiable and all manifolds
are paracompact.

2. THE FUNDAMENTAL LIFTINGS

Let M be an m-dimensional smooth manifold. We denote by pyr : TM — M the
tangent bundle and by gum : T*M — M the cotangent bundle of M. Let mp : TEM =
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JY(R¥, M) —» M be the bundle of k-dimensional 1-velocities. It is well known that
the linear frame bundle FM = invJ}(R™, M) is an open dense subset of T} M. The
canonical coordinates (z*) on M induce the additional coordinates (y* = dz') on TM,
(pi) on T*M and (v}, =1,...,k) on Tt M. The bundle T} M can be identified with
the Whittney sum TfM = TM @ --- & TM of k copies of TM. Further, we have k
canonical projections pgp, : TEM — TM, a=1,...,k, (z*,4},...,yi) = (z',y}).
Let f : M — R be a function on M. The vertical lift f¥ of f to T{ M is a function
fY : T!M — R defined by f¥ = f o mp. Further, we define the a—complete lift

fO TIM - R, e =1,...,k by fO2(jdy) = %fti—")‘o. Obviously, f — &% is a

linear map of C*°(M) into (T} M) satisfying (f - 9)¢* = f&* . gV + fV . ¢& for
all f,g € C®°(M), a = 1,...,k. Mikulski has recently proved that the (k+1) lifts fV,
fO1,..., fOF generate all natural liftings of functions to the bundle T} M. By [9], all
natural transformations C®°(M) — C®(T} M) are of the form &(fV, fO1,..., fOF),
where @ : R¥*! s R is an arbitrary smooth function. Finally, the complete lift of
f to T!M is defined as the sum f€ = Za_ fOo, [2]. It is interesting to point
out that fO = (p%,,)* fC, where fC is the complete lift of f to TM defined by
fOy) = dfa(y), = = pu(y), in coordinates fC(y) = 2 y'.

Let X be a vector field on M. We define the a—vertical lift XV'*, o = 1,...,k
of X to T} M by means of translations in the a—directions in the individual fibres of
T!M. If w is a 1-form on M, then we have k functions iqw : T{M - R,a =1,...,k
defined by (iqw)(u) = w(p$ps(u)). Then the a-vertical lift X"** can be also defined
by XV(igw) = 85w(X), [8]. Finally, the complete lift X of X to T{ M is defined
as the flow prolongation of X, X¢ = 2 o (Ti (exptX)), where expt X means the flow
of X, [6], [11]. By [10] the a—vertical and the complete lifts of X can be also defined
by means of their actions on liftings of functions. We have

Lemma 1. Let X and Y be arbitrary vector fields on M and let f be an arbitrary
function on M. Then
L XO(f5) = (X7)%, a=1,....k,
XC(fC) =(Xf)°, Xc(fv)‘“(Xf)V
IL XV(fO8) = 65(Xf)Y, a,B=1,.
XVe(fVy=0, XV(fC) = (Xf)V, a=1,...,k,
IL [XC,v%e] = [X,Y]V", [XV*YVf] =0, ofB=1,...,k
[X°,Y°] = [X,Y]°.

In coordinates, if X = ¢* —,—, then XV = ¢i-2. B XC = Elaz- + ggy{;%. Now

we define the vertical and the complete lifts of (0,2)-tensor fields to T M. We shall
use the following

Lemma 2. If G and H are (0,2)-tensor fields on Ti M such that for all vector fields
X1, X2 on M we have G(XP,X{) = H(XE,XS), then G = H.

Proof. It suffices to prove that if G(XIC,X2C) = 0 for all vector fields X;, X3 on M,
then G = 0. Suppose that

(1) G = A;jds* ® dz? + B“da: ® dy’ + C"dya Qdz? + Df;ﬂdy; ® dyf;.
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If X1 = z., X, = 83,, then G(XIC,XZC) = A;j = 0. Further, let X; = z., X, =
f' . Then G(XE,X§) = ,]g—f-;ya, which implies Bf; = 0. Quite analogously we

prove that C5 =0and D°'ﬂ 0. O
Let G be an arbitrary (0,2)-tensor field on M.

Definition 1. The vertical lift of G to T M is a (0,2)-tensor field GY on T} M
defined by GV (XE,X§) = (G(X1,X3))V for all vector fields X;, X, on M.

Definition 2. The a—complete lift of G to T{ M is a (0,2)-tensor field G on Tt M
defined by G&*(XE,X§) = (G(X1,X2))%?, a = 1,...,k for all vector fields X;, X
on M. The complete lift GC of G to T M is defined by G¢(XE, X§) = (G(X1, X2))¢
for all vector fields X;, X, on M.

'If G is a 2-form on M, then GV = 7},G is exactly the pull-back of G to T} M.
Analogously, G&* = (p$,,)*GC, where GC is the complete lift of G to TM, [3]. We
have G€ = }:k L G%°. In coordinates, if G = g;;dz’ ® dz’, then

a=

(2) GY = gijdz' ® d,

dg; . : , :
(3) GO = 6-" Lok st @ dad + gijda’ ® dyl, + gijdyl, ® da’.

One proves easily

Lemma 3. Let F and G be (0,2)-tensor fields on M. We have
L (aF +bG)Y =aFV +bGY, (aF +bG)€ = aFC + bGC for all a,b € R,
(aF 4+ bG)®* = aFS* + bGS° foralla,b e R, a = 1,...,k,
I (FRG)°> =FO*@GY +FV®G%® for all a = 1,...,k, (F® G)® =
FCRGV+FV®GC (F®G) =FY®GY,
III. If G is symmetric (or antisymmetric), then GV, GS* and GC are symmetric
(or antisymmetric) as well, a = 1,...,k,
IV. If G is a 2-form on M, then GV, G%* and G° are 2—forms on Tf M and we
have (dG)Y = dGY, (dG)®* = dG%*, (dG)¢ = dG®, a =1,...,k,
V. If G has rank r, then GS® and G€ have rank 2r and GV has rank r,
VI. If G is a Riemannian metric on M, then GV, G%* and G are degenerated
metrics on T{ M,
VIL. GV(XV*,YC) =0, GY(XV*,YYP) = 0 for all vector fields X, Y on M,
a,B=1,...,k,
VIIL. GS*(XV# YC) = GO*(XC,YVP) = 65(G(X, Y)Y,GC(XxVA, YY) =0
for all vector fields X,Y on M, o, 8,y =1,...,k,
IX. GE(XV,Y%) = GO(XC,YV*) = (G(X,Y))V,GC(XV*,YVF) = 0 for all
vector fields X, Y on M, o, =1,...,k.

Denote by km : TT{M — T}TM the isomorphism defined by the exchange ho-
momorphism of Weil algebras of functors 7T} and Tp T, [6]. This isomorphism can
be also defined by ru (2|, (736)) = 33 (£],8t), where 6(s,t) : R x R¥ — M,
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8(s,t) = 64(t) = 6:(s). The complete lift of a vector field X on M to T} M can be also
described by X€ = n;,l oT} X. Now we present a similar geometrical characterization
of complete lifts of (0,2)-tensor fields to Tt M. We first define natural transforma-
tions 5§, : TET*M — T*T!M over the identity idpyp of TIM, a = 1,...,k. If
X : M — TM is a vector field and w : M — T*M 1s a 1-form, then the contrac-
tion (w,X) : M — R is a function on M. Then s§;, a = 1,...,k are defined by
(s 0 T{w, X©) = (w, X)*. Analogously, one can also define a natural transforma-
tion sy : TET*M — T*T} M over idrap by (sm 0 Tiw, XC) = (w, X)C. Obviously,
sum is the sum of all s§;, @ =1,...,k on the vector bundle T*TfM — T M. Ifk =1,
then sps is exactly the isomorphism TT*M — T*TM defined by Tulczyjev and Mod-
ugno and Stefani, cf. [6]. We shall denote by (z*, p;, i, pia) or (2%, y}, ridz’ + s dyl)
the local coordinates on Tp T*M or T*T} M, respectively. Then the equations of 5%,
are y!, = 7%, ri = pia, s? = 68p; and the local coordinate expression of sy is ¥}, = z¥,,
r = Z';___lp.',a, s =pi,a=1,... k.

Remark 1. The well known isomorphism TT*M — T*TM is a particular case of
the isomorphism TfT*M — T*TFM, where TFM = J}(R, M) is the bundle of 1-
dimensional k-velocities, [1]. On the other hand, if £ > 1, then neither s, nor

spm : TET*M — T*T} M are isomorphisms. Moreover, the following assertion enables
us to clarify that if k > 1, then there is no natural isomorphism TyT*M — T*T} M.

Proposition 1. All natural transformations of TYT*M into T*T} M are of the form
Va = Azl +-- + Agal,
(4) sia = Baph
_(Alp! 1 gky, kpt k pky, ,
ri=(AB +---+ AyB)pin+---+ (A1B' + -+ A{B%)pi x + Cpi,
where A%, B and C are arbitrary smooth functions of the invariants I = p;z},,
B=1,... k.

\
Proof. Denote by GT, the group of all invertible r—jets of R™ into R™ with source
and target zero. By the general theory of natural operations in differential geome-
try developed by Kold#, Michor and Slovék in [6], it suffices to detetmine all G?,-
equivariant maps of the corresponding standard fibres,

Ya = yc‘x(xiiaphpi,‘y;ﬂa”/ =1,..., k)a

i 3?(¢2,P:’,P.’,ﬁﬂ,’)’= 17'-"k):
i = ri(z;i$pivpi.‘7;ﬂ17 = 1a' . yk)

@
Il

We shall denote by (a}, aj- &) the canonical coordinates in G2, and by tilde the coordi-
nates of the inverse element. One evaluates easily the following transformation laws,
which represent the action of G?, on the standard fibres

To=aj2l, Bi=pj, Pia=pjat+aizop;,

= __ i, ] - _~ja = ~j .~ Lok a
Vo = QjYh, 35 =0;8j, Ti=2alrj+dpa;yss;.
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Consider first y%,. The equivariance on the kernel of the jet projection G2, — G,
gives that y! are independent of p; . Then the tensor evaluation theorem from [6]
yields the first equation of (4). Quite analogously we deduce the second equation of
(4). Assume finally r; in the form r; = kPp; g4 7i(z%, pi, pi,s). Then the equivariance
reads k? = A2 B (the sum through &) and 7; have the tensorial transformation law.
This completes the proof. O

The natural transformation sps corresponds to A;- = 6;'-, B*=1,Bf =0forf# a
and C =0.

Each tensor field G = g;;dz’ ® dz7 on M can be identified with the linear map
GL : TM — T*M, p; = gijy’, [3]. Let Gr : TT}M — T*T!M be the linear
map over the identity idr s of T M corresponding to the (0,2)-tensor field (1) on
T,:M The coordinate expression of G, : (z*,y%, X!, Y}) = (2%, 9}, ridzt + .s"’dyc;) is

= A;; X/ +B°‘Y,§, s{ = C X"+D°’BYI, Using the definitions of G, G, s§y and
sym we deduce

Proposition 2. Let G be an arbitrary (0,2)-tensor field on M. Then

I. GO is the only (0,2)-tensor field G on T} M satisfying G, = s§;0TFGLokm.
II. GC is the only (0,2)-tensor field G on T} M satisfying GL =spmo0 T}GLokm.

Each (0,2)-tensor field G on M defines k 1-forms 7% on TIM, a = 1,...,k,
T(u) = G(—,pFp(u)). In coordinates, 7% = = gijyldz’. In other words, 7* = (G o
P$ ) w, where w = p;dz’ is the canomcal Liouville 1-form on T* M.

Definition 3. The a-antisymmetric lift of a (0,2)-tensor field G on M to Tf M is
the 2-form G4 on T} M defined by G4 = dr=.

Obviously, GA* = (G 0p$,,)*Q is the pull-back of the canonical symplectic form
Q = dw. In coordinates,

(5) GAe = agj'." y;"dzi Adzl — g,'jdz" Adyl.
zl

3. CLASSIFICATION OF LINEAR NATURAL LIFTINGS T* @ T* ~» (T* @ T*)T}

In this section we determine all first order linear natural operators transforming
(0,2)-tensor fields on M to the bundle of k-dimensional 1-velocities Tf M. We first
prove the following auxiliary assertion.

Lemma 4. All G}, -equivariant smooth maps R™ X -+ x R™ xXR™ @R™* — R™ ®
(A

k
R™, E;; = E;j(y,9ij; = 1,...,k) are of the form

5 s 5
Eij = @1gij + p2g5i + 03 9ikv¥ 9503 + 010 9ikvE 9053 + 03 grivh 95593 + 03 grivigiavi

where ¢; = @i(gijyiyhi 08 =1,...,k).

Proof. Introduce new variables u',v' € R™, @' = aju’, ' = ajv’ and consider
the sum E.-ju"vj. This is a G} ~invariant smooth function ¥ = ¥(y%, gij, u*,v';a =
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1,...,k). By the tensor evaluation theorem, [6], we have

¥ = p(gijyayh giju'v, gijv'v’, gijutv’, giju'ed,

giivewd, giju'vl, gijviv? giv'yl 0, B =1,.. k).

Differentiating with respect to u’ and putting u' = 0 we obtain E;jv/ = 9 gijv7 +
Y2g;iv? +39i¥] +ag;iv}, where ¥i = 1i(gijyayp, 9ij0'v’, 9ij'Yh, 9ijyov?). Finally,
differentiating with respect to v* and setting v* = 0 we get the assertion. O

As a direct consequence we have

Lemma 5. All G}, —equivariant smooth maps R™ x --- x R™ xR™* QR™ — R™@®
N e’

k
R™*, E;ij = Eij(y},9ij;a« = 1,...,k), where g;; are symmetric in ¢ and j, are of the

6 i j
form E;j = ¢19ij + @7 9iky49jsy3, where oi = pi(gijyaypia, B =1,...,k).
Quite analogously to Lemma 4 one can prove

Lemma 6. All G} —equivariant smooth maps R™ x --- x R™ xR™ @ R™ x R™* ®
N e’

k
R™ @ R™ — R™ @ R™*, E;; = E;;(v, 9ij, 9ijk;a = 1,..., k), which are linear in
9ij and gij k, are of the form Eij = ¢19ij+¢295i + 05 9ij kVa + 5 95 kYo + 9§ ki jU& +
P8 gkjiVa + PTYik Vs + P8Ik, Vs, i €R.
Let GV or G or GA* be the vertical or a—complete or a-antisymmetric lifts of a
(0, 2)-tensor field G on M to the bundle T} M defined in (2), (3) and (5), respectively.

In what follows we shall denote by G’ the (0,2)-tensor field on M given by (G, X ®
Y)=(G",Y ® X) for all vector fields X and Y on M, in coordinates

(6) G = gj,'d.ti ® dzr’.

Now we deduce

Proposition 3. All first order natural R-linear operators T* @ T* ~ (T* @ T*)T}
transforming (0, 2)-tensor fields on M into (0, 2)-tensor fields on T} M are of the form

k
(1) G A1GY + A(G)Y + ) A5GO*+

a=1

k k k
DAFGHOT+ Y AFGhT+ Y AT(G)M,
a=1

a=1 a=1

where all A's are arbitrary real numbers.

Proof. Each (0,2)-tensor field on T} M is of the form (1). By [6] we have to determine
all G2,—equivariant maps J§(T* ® T*)R™ @ TAR™ — (T* ® T*)T{R™, in local coor-

dinates (gij, gij k. y%) — (A,'J-,Bf'j,Cf‘j,D;’jﬁ), which are linear in g;; and g;jx. Using
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standard evaluations we determine the following transformation formulas
= _ =kt
9ij = @;a;3Gke,
Gijk = 0{ ;G Gmn,p + (@307 + 87" 6]k )gmn,

—1 i 7
Yo = ajygn

®) Aij =T Amn + TP Bh + T3 Yo Cmn + aridsTaTs Dotns
B, =ara} Bl + analyLDel,
Ci; =ara;Co, +arayypDas,
D" =ararDet.

Consider first D?jﬂ(y;,g.-j,g.-,-,k;a =1,...,k). By Lemma 6,

- D = o9 + 03 95 + 057 gii wvk + 057 gji ki
+ 02 ki vk + 05 gki ik + 05 gik, vk + 08 gjn vk

Then the equivariance on the kernel of the jet projection G2, — G}, yields
Dif = digi; + d5Pgsi + 5P (gijk — giik + 9kij — ki + Gik,i — ik, )V5-

Moreover, we shall assume that Cj, B;; and A;; are of the form a.nalogous. to that of

(9). Using equivariance on the kernel of the jet projection G2, — G, and then the
full equivariance we obtain
Dyl =,

Cij = (A3 + A§)gi; + (AT + AF)gji,

B = (A3 — Ag)gij + (AY — Ag)gji,

Aij = Avgij + Azgji + A3 9ij eve + AL )i ke

+ AZ(gjk,i — gik,5 Ve + AG(gkji — ki j)Ve,

which is nothing else but the coordinate form of (7). O

4. FIRST ORDER NATURAL OPERATORS T* © T* ~» (T* @ T*)T}

Notice that all the liftings of a (0,2)- tensor field to the bundle Tj M defined up till
now are linear. Now we shall define some nonlinear liftings. Denote by f*f = g¢; jyf,y;,

the function on T} M given by the full contraction and let 7 be the 1-forms defined
in the second section. We can define the following (0, 2)-tensor fields on T} M

(9) @1, r* Q@ df?7,df*? @ v, df*? @ df’.

The aim of this section is to prove
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Proposition 4. All first order natural operators T*QT* ~» (T*®T*)T} transforming
symmetric (0, 2)- tensor fields on M into (0,2)-tensor fields on T M are of the form

k k k
G Y AFGOU+ ) AFGA + AGY + Y AP e+

a=1 a=1 a,f=1
k k k
Yo APd P edf + Y AT @dff Y AP @ T
a,f,v,6=1 a,f,v=1 a,f,y=1

where all A's are arbitrary-smooth functions of the invariants I,g = g;jyf,y;, a,f =
1,...,k.

Proof. Tt suffices to determine all G,-equivariant maps J}(T* © T*)R™ & T{R™ —
(T* ® T*)T{R™ of the form (gij,gijk ¥h) — (Aij, B, CG, Zﬂ) Consider first
D?j‘g(yg,g,’j,g.’jyk; a=1,...,k). By [7], if G is symmetric, then

ap**  op¢P
(10) gap ( Y + —”_‘) = 0.

09aq,r  Ogarg

Furthermore, if we suppose G to be regular, then we can contract (10) with the inverse
matrix gP*. We get
aff af

6gaq,r aga.r,q

Using symmetry of G and the cyclic permutation in the indices (a,q,7) we prove
analogously to [7] that

aD;f
4 .
09pq,r

(11)

Regular (0, 2)-tensor fields form an open dense subset among all (0,2)-tensor fields.
We have proved that (11) holds on the open dense subset, so that (11) holds every-
where. Hence Df’jﬂ are independent of g;;x. By Lemma 5,

]
D?’jﬂ = wi’ﬂgij + SD;IM g;kyf,g,',y3~

Moreover, we assume that Cf; are of the form

]
(12) C% = By’ gi;xyf + B3 gki jub + B3  gksivh + CoP " Gimny 5 y2 gip, byl +

5 8

C3P " Gim,n Y5 Y3 990, i3S + O3 " Gmn iV Y5 9ip,aVEVE+
5 ) k

CeP % gmn, iy Y5 9p0,i¥5YE + DY giryhgsn.aviyi+

6 k 6 k
D3P gty gpa,iv2ud + D3P gkl gip. qutul+

5 ~ .
Dgﬂ‘y gjkysgpq,iyf/yg + Ciaj(y:xagijv Gijky 00 = la ey k)



LIFTINGS OF COVARIANT (0,2)- TENSOR FIELDS TO THE BUNDLE OF K-DIMENSIONAL 1-VELOCITIES 119

with undetermined coefficients By, By, B3, C1,...,Cy4,D1,...,Ds. Using equivan-
ance on the kernel of the jet projection G2, — G, and then the full equivariance we
get C% = 2077 (9ij k 9k =0k, )5+ 1057 " ikt 9pa, ;Y E+CR9i;+C5 P ginybgsays.
Using the same procedure for Bfj and for 4;; we complete the proof. O

Remark 2. Kowalski and Sekizawa have in [7] determined all first order natural op-
erators transforming Riemannian metrics to the frame bundle FM. Their construc-
tion essentially employs the regularity of a Riemannian metric and the corresponding
Levi-Civita connection which can be canonically associated to each regular symmetric
(0,2)-tensor field. On the other hand, in the case of a general symmetric (0, 2)-tensor
field (not necessarily regular) we have no canonical connection at our disposal. Hence
the result of Kowalski and Sekizawa is not a particular case of Proposition 4. On the
contrary, owing to the regularity of a metric, the set of natural operators of Kowalski
and Sekizawa is even wider than the set of natural operators from our assertion.

Remark §. Each (0,2)-tensor field G = g;jdz’ ® dz’ on M defines a 2-form w =
(9ij — gji)dz* ® dz7 on M, so that the pull-back R = 7},(dw) is a 3-form on T} M,
R = Rijxdz' ® dz’ @ dz*. If G is a general (0,2)-tensor field, then we have further
(l;) invariants Iogy = R.'jky:;y;,y’;, a,B,y =1,...,k. Notice that if G is symmetric,
then all I,g- vanish (cf. Proposition 4).

5. CORRECTION

The first author should like to make an apology for an error in the proof of Theorem
in [3]. This section is devoted to the correction of this mistake. Let G be an arbitrary
(0,2)-tensor field on M and G' be given by (6). Let 8 = gi;y’dz* be the 1-form
on TM defined by (8,X) = (G,—,X) for all vector fields X on M, cf. [3], p. 217.
Analogously, we shall denote by 3’ the 1-form on TM defined by (', X) = (G, X, —),
B' = gijy'dzI. Finally, let f : TM — R be a function defined by the contraction,
f = gijy'y’. Then the exterior differential df is further 1-form on TM. Evaluating
tensor products of 1-forms 3, 3’ and df, we obtain 9 nonlinear liftings, which were
not included in Theorem in [3]. The correct form of Theorem from [3], p. 222 is the
following

Theorem. For m 2 3, all first order natural operators T* @ T* ~» (T*Q® T*)T
transforming (0, 2)-tensor fields on M into (0,2)-tensor fields on TM are of the form

(13) G~ K1(G")C + K2GC + K3(G")Y + K4GY + K5(G')* + KeGA
+ K:18@0+ KB @B + Ko QB + K1o8' ® B+ K11 ® df
+ K128' ® df + K13df @ B+ Kadf ® ' + K15df @ df

where K; = K;i(gijy'y’) are arbitrary smooth functions of the invariant I, and G°,
GV and G4 denote the canonical liftings.

Correction of the proof. On the right hand side of s; in (8) in [3] the following term
+(a1gjnX7y" + c2gmjy™ X’
+ 03(gmn, V™Y X7 + gmi¥™ Y7 + gimy™Y))(90i0° + gisy”)
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is missing and analogously on the right hand side of r; in (8) in [3] we have to add

+ (a19in XY™ + a2gmjy™ X’

+ 03(gmn U™V X7 + gmiy™ Y7 + gimy™Y7))gpq,iv"y"
+ (B19jn X y"™ + Bagmjy™ X7

+ Ba(gmn, sy " X7 + gmiy™ Y7 + gimy"Y))gsiy’

+ (1195 X7y" + Y2gmjy™ X7

+73(gmn, ¥V X + gmiy"Y? + Gimy™Y7))gisy’.

This corresponds to (13), v‘;here K; = 71, Kg = B2, K9 = 72, K10 = /1, K11 = 73,
K2 = B3, K13 =a;, Kiy =az and K5 = a3. O

Then the correct form of Corollary 1 and Corollary 2 in [3], p. 223 is:

Corollary 1. For m 2 3, all first order natural operators transforming symmetric
or antisymmetric (0,2)—tensor fields on M into (0,2)-tensor fields on TM are of the
form

G Ki1G° + K;GY + KsGA + Kyf @ B+ KsB ® df + Kedf ® B + K7df @ df

where K; = K;(I,) are arbitrary smooth functions of the invariant I.

Corollary 2. For m 2 3, all first order natural R-linear operators T* @ T* ~
(T*® T*)T are of the form '

G- Ki(G')° + K,G° + K3(G") + K4GY + Ks5(G')A + K¢G*,
where K; are arbitrary real numbers.
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