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RENDICONП DEL CIRCOLO MATEMATICO DIPALERMO 
Serie II, Suppl. 59 (1999) pp. 123-133 

ON THE SECOND ORDER ABSOLUTE DIFFERENTIATION 

ANTONELLA CABRAS, IVAN KOLÁŘ 

ABSTRACT. First we compare two different approaches to the second order absolute 
differentiation on an arbitrary fibered manifold. Then we extend the second approach 
to connections on the functional bundle of all smooth maps between the fibers over the 
same base point of two fibered manifolds over the same base. (For the first approach, 
this problem was solved in [4].) 

There are two different approaches to the second order absolute differentiation 
in the case of a principal or linear connection T. The first one constructs Vp A 

by means of an auxiliarly linear connection A on the base manifold, [17], which is 
related to the ideas of tensor calculus. The second one applies another geometric 
idea by C. Ehresmann, [6], and constructs Vp by means of T only. In Section 1 
we recall the first construction in the case of a connection T on an arbitrary fibered 
manifold n : Y -> M, which has been developed recently in [1]. In Section 2 we 
generalize Ehresmann's approach to connections on a finite-dimensional groupoid to 
the groupoid QY of all diffeomorphisms between the individual fibers of Y. We 
use systematically the structure of a smooth space in the sense of Frolicher on QY. 
The groupoid approach clarifies directly that the values of Vp are semiholonomic 
2-jets. But it is remarkable that it also interprets some prolongation procedures for 
connections on Y from a new point of view. In Section 3 we present a construction 
of Vp by using second tangent bundles, which we need for a generalization in Section 
6. Then we comment on some differences between Vp A and Vp. 

The second part of the present paper is devoted to a functional version of the 
second order absolute differentiation. Consider two locally trivial fibered manifolds 
P i : Y\ —•> M, P2 : Y2 -» M over the same base and the bundle of all fiber maps 

(i) ^(yi,y 2 )= (J c°°(y lx,y2aJ), 
iGAf 
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which is a smooth space in the sense of Fro.ticher, [2]. The first approach to the 
second order absolute differentiation on T{Y\yYi) was studied in [4], so that we go 
directly to the second one. In Section 5 we define the absolute differential V r / of 
any smooth map / of a manifold N into T(Yi,Y2) with respect to a connection T 
on TiXiiYi)' Then we construct V£/ by using the macliinery of second tangent 
bundles. In Section 7 we deduce for a finite order connection T on T(Yi,Y2) and a 

section s : M -> T(Y\y I2) that the deviation of semiholonomic 2-jet V*s(x) coincides 
up to the sign with the curvature of T at s(x). 

If we deal with finite dimensional manifolds and maps between them, we always 
assume they are of class C°°, i.e. smooth in the classical sense. On the other hand, 
the concept of smoothness in the infinite dimension is due to Frolicher, [7], see also 
[3]. 

1. An auxiliary linear connection on the base. On an arbitrary fibered manifold 
7r: Y -* M, a connection can be defined as a section T :Y -* JlY9 see e.g. [13]. We 
denote by vr : TY -* VY its vertical projection. If s : M -» Y is a section, we define 
its absolute differential by 

(2) V r s = v r o Ts, 

i.e. we construct the vertical projection of the tangent map of s. Hence Vrs is a 
section M -> VY ® T*M. Let x*, yp be some local fiber coordinates on Y and let T 
be expressed by 

(3) dyp = F?(xiy)dxi 

and s by yp = sp(x). Then the coordinate form of (2) is 

(4) f£-.ff(.-, .(>)). 

There is a canonical isomorphism iY : V(JlY -> M) -» JX(VY -> M), [13], p. 
255. If we compose the vertical tangent map VT : VY —> VJ^Y with iy» we obtain 
a connection Vr := jy o VT on VY —> M, which is called the vertical prolongation of 
T. If Yp are the additional coordinates on VY, then the equations of Vr are (3) and 

dF? 
(5) d y = - - - t . y w . ðy я 

Let A be a linear connection on TM and A* be the dual connection on T*M. Since 
Vr is semilinear, we can construct the tensor product V.T® A*, which is a connection 
on VY <g> T*M, [1J, [13], If Y? are the tensor coordinates on VY ® T*M and A)k(x) 
are the Christoffel symbols of A, then the coordinate expression of V.T ® A* is (3) and 

Zap? \ 
(6) dY?=\^Y?-A$jY

pjdxi. 
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Hence we can construct the second order absolute differential 

(7) V£ |As = VVr®A-(Vrs). 
If we have a vector bundle it: E -> M, then VE « Exj^E. If T is a linear connec

tion on Ey then Vr coincides with the product T x T. For every section s : M —•> E, 
we have pr2 o Vps : M -> E®T*M and V£As is identified with (Vr$, Vr®A* (Vrs)). 
This is the classical tensor approach, [16]. In particular, if E is a tensor power of TM 
and T*M and T is the corresponding tensor power of a linear connection A on TM 
and of its dual A*, we take A again for the auxiliary linear connection on TM. Then 
we obtain the classical procedures of tensor calculus. 

2. The groupoid approach. Let IT : Y -> M be a locally trivial fibered manifold. 
We write IsoC°°(YX)Yy) for the set of all diffeomorphisms of Yx into Yy. 

Definition 1. The set 

(8) QY= |J IsoC°°(Yx,Yy) 
(a.,y)6AfxAf 

is called the groupoid of all diffeomorphisms of the fibers of Y or the groupoid of Y. 

We are going to show that QY is a smooth space in the sense of Frolicher. 
In general, let p\ : Y\ -> M\ and p2 : Y2 -> M2 be two locally trivial fibered 

manifolds. Then we define 

(9) ?ib(YuY2)= (J C°°(Y\XiY2y) 
(x,y)€AfixM2 

We denote by p : Fibiy^Y^ -> M\ x M2 the canonical projection. Consider the 
product projections pr_: M\ x M2 -> Mi, pr2 : M\ x M2 -> M2 and construct the 
pullbacks Y\ = prfYi, Y2 = pr2Y2j which are fibered manifolds over M\ x M2. Then 
we have defined T{Y\> Y2) in the sense of (1). By the definition of pullback, 

(10) Fib(Y\,Y2) = F(YuY2). 

This introduces the structure of a smooth space on .Ft&(Yi, Yi), [2]. In other words, 
for every manifold 1V a map / : N -> Tib{Y\^ Y2) is smooth, if the base map p o / : 
N -> M\ x M2 is of class C°° and the induced map 

(11) f:KYl-*Y2, 

/ (« . yi) = /(«)(j/i)i fi=pri°P°f,ueN,yi£ Yu / i(«) = Pi(yi), is of class C°°. 
Moreover, r-jets of JV into Tib{Y\,Y2) are introduced by 

^ ( ^ . ^ ( n , ^ ) ) := JT(N,T(YUY2)), 
where the right-hand side was defined in [4]. In the case of product bundles Y\ = 
M\ x Qi, Y2 = M2x Q2y we have 

(12) Jr(N,Fib(Y\,Y2)) = r(N,M\ x M2) xNC°°(Q\,Jr(N,Q2)), 

where the subscript a indicates that we consider the maps into the fibers of the jet 
projection a : Jr(N,Q2) -> N. 

The inclusion QY C Fibfy, Y) defines the structure of smooth space on QY. We 
shall write a = pr\ o p : QY -> M, 6 = pr2 o p : QY -> M. The following definition 
extends an idea by Ehresmann, [6], to the infinite dimensional space QY. 
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Definition 2. An element of connection on QY at x G M is a 1-jet at x of a smooth 
map a :U -> QY of a neighbourhood 17 of a; satisfying 

(13) aa(u) = x9 ba(u) = u for all u G E/ and a(x) = idyx . 

The set of all elements of connection on QY will be denoted by QQY. Since 
QQY C Jl(M9 QY)y it is a smooth space as well. The source jet map is a projection 
QQY -> M. 

Every A G QxQY, A = jla(u), defines a section A : Yx -> J^y, 2(y) = jla(u)(y). 
Conversely, Proposition 5 of [19] implies that for every section B : Yx -> J^Y there 
exists a neighbourhood U of x G M and a map o-: U -> .Jt&(y, y ) satisfying (13) such 
that B = j*a. Since o-(x) = idyB, the map a : U x Yx -> y is local diffeomorphism 
in a neighbourhood of {x} x Y .̂ In this local sense, connections on Y correspond to 
smooth sections T : M -> QQY. 

Given a section s : M —> y and an element of connection -4 = j.Ja(u) G Qx(?y, we 
define the absolute differential VAS by 

(14) VAs = j * (tr-^tiJ^H)) € Jl(M, Yx), 

where (7~1(u) denotes the inverse diffeomorphism, so that a"1(u)(s(u)) is a local map 
M -*YX. We are going to show that (14) coincides with (2) for A = T\YX. In some 
local coordinates x*, yp, let j / p = /p(u,y) be the coordinate expression of a(u). Then 
A : YX -> Jjjy is given by 

W <?<*•»> = ^ -

If 2/p = sp(u) is the coordinate form of s, or~1(u)(s(u)) is expressed by fp(u,s(u)), 
where fp(u,y) is the inverse diffeomorphism of a(u). Then the coordinate form of 
jxa-i(u)(s(u))\s 

,lfix dfp(x,y) dfp(x,y) ds« 
K } dx* dy<* dxi ' 

But a(x) = idyc implies dfp(x,y)/dyq = 8P. Differentiating a~l(u)oa(u) = idya, we 
obtain dfp(xiy)/dxi = -dfp(x,y)/dxi = -Ff(a;,2/). Hence (16) concides with (4). 

Using this point of view, we interpret Vrs as a section of the union 

(17) Jl(M,Y^):= \Jj\M9Yu)9 

xeM 

which is a fibered manifold over M. Every diffeomorphism (p : Yx —> Yy is extended 
into a map J1(idji.f,V?) : ^ ( - ^ f ^ ) ~+ -^(-^ly)- This defines an injection QY c-> 
5(J1(M,y,7r)). Hence every element of connection A = i\a(u) on <?y is extended 
into an element of connection A\ on Q(J1(M,Y,TT)) defined by 

(18) -4i=j^M-<W(tO)-
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The correctness of this definition follows from the coordinate expressions. The local 
coordinates x%\ yp on Y induce jet coordinates «*, yp,y? on each J1(M,YX). If a(u) 
is expressed by 

(19) *' = «', 2/p = / p (« ,y ) , 

then the additional coordinate expression of J1(idM,a(u)) is 

(20) «W, tf = - ^ - r f . 

Hence A\ is of the form 

dFp 

(21) Ar* = 0, dyp = F?(x,y)dx\ dy? =-j-y?dx> . 

Thus, every connection T on Y is canonically extended into a connection Ti on 
Jl(M, y, 7r). Since Vrs is a section of J*(M, Y, 7r), every 

V r i (Vr«) (*) = i i Jx(idAf.cr(ti))-1 (Vrs(t*)) 

is a semiholonomic 2-jet of M into Yx. 

Definition 3. The map 

(22) V*a := VPl (V r«): M -> (J PX(M,Yx) 
xeM 

is called the second absolute differential of s with respect to I\ 

Proposition 1. The coordinate form o/VpS is (4) and 

92s Off dFjd* dF?ds* dFf 
K } dx{dxJ dxi dy« dxi dy<* dxi dy« % ' 

Proof. This follows directly from (4) and (21). 

We remark that the idea of extending the groupoid QY can be applied for pro
longating connections in many similar cases. For example, every diffeomorphism 
(p : Yx -> Yy induces the tangent map Tip : VXY -> VyY. Hence every element of 
connection A = jxo(u) on QY defines an element of connection VA = jxT(c(u)) 
on the groupoid QVY of the vertical tangent bundle. For a connection V on y , VT 
coincides with the vertical prolongation from Section 1. 
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3. The use of second tangent bundles. For every vector bundle p : E -> M, 
there are two vector bundle structures TTE : TE -•> E and Tp : TE -> TM on TE. 
Moreover, we have an injection i : E -> TE which identifies Ex with the tangent 
space TQx(Ex) of the fiber Ex at its zero vector 0X. In other words, i(E) is the 
common kernel of both projection ITE and Tp. Using the terminology of J. Pradines, 
[18], [15], we say that i(E) =: HE C TE is the heart of E. Clearly, if q : D -» 1V 
is another vector bundle and / : E —• D is a linear morphism, then Tf is a linear 
morphism of both vector bundle structures its —> KD and Tp —> Tq. We shall also say 
that Tf is linear in both directions. Moreover, Tf(HE) C HD and the restriction 
Hf:HE-> HD of Tf coincides with / . 

Every non-holonomic 2-jet X € J*(M,1V)y is of the form j\.G, where a : M -> 
Jx(MyN) is a section of the source projection a : JX(M,N) —•> M, [5]. Every a(u) G 
J*(M,N) is identified with a linear map u(a(u)) : TUM -•> T1V, so that X defines a 
map 

(24) nX : TTXM --> TTyN, /iX = r,M(<r(u)). 

Consider the projections ITTM : -T-T.M -r TM and TirM : -TTM -•> TM. 

Lemma 1. (J. Pradines, [18]) A map A : TTXM —• TTy1V represents a non-
holonomic 2-jet X E J%(M,N)y, i.e. A = /xX, iff all following conditions are ful
filled: 

(i) A is iTT-projectable over a linear map A\ : TXM -> TyN and Tit-protectable 
over a linear map Ai: TXM -> TyN, 

(ii) A is a linear morphism with respect to both vector bundle structures ITT and 
TIT, 

(hi) the heart restriction Ao : HXTM -> HyTN coincides with A\. 

Moreover, X is semiholonomic, iff A\ = A2. 

Proof. If / p (u) , ff (u) is the coordinate expression of c, then ua(u) is of the form 
yp = fP(u), Y? = ff(u)X\ For Txfia(u) we find 

(25) Y* = f?(x)X\ dyv = ?^dx\ dY* = ^ ^ XW + f? (x) dX*. 

This is the coordinate form of our claim. D 

The absolute differentiation of sections of a fibered manifold n : Y -» M can be 
extended to any map f : N -*Y. We define 

(26) V r / = v r o r / , 

so that V r / is a VB-morphism TN -* VY over f : N -> Y. If u* are some local 
coordinates on 1V, U8 are the additional coordinates on TN, 

(27) x* = / ' («) , ./ = / » 
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is the coordinate expression of / and T is given by (3), then the coordinate form of 
Vr/ is (27) and 

(28) y , s =(^- J TCf(t.)./«(«))^) ir ' . 

Vr/ is a map with values in VY, so that we can construct its absolute differential 
with respect to any connection A on VY -> M. Since Q : VY —•• Y is a vector 
bundle, JlVY is a vector bundle over JlY. A connection A : VY -> JXVY is called 
semilinear, if it is projectable, i.e. there exists a connection Ao : Y -> JXY satisfying 
A 0 o Q = (J-Q) O A, and A is a VS-morphism VY -> ^ V Y over A 0. Clearly, both 
TQ : TVY -> TY and Vg : VVY -> VY are vector bundles. If A is a semilinear 
connection, its vertical projection v& : TVY -> VVY is a ViB-morphism TQ -> VQ 
over vA o : TY -> Vy. 

Proposition 2. Lei T 6e a connection on IT :Y -> M, A te a semilinear connection 
onVY -> M and f : N -*Y be a map. Then 

(29) V A ( V r / ) ( u ) : Tru1V -> W / ( u ) Y 

corresponds to a non-holonomic 2-jet of J*(N,Y,r(f(u))). If Ao = I\ tfien eac/i jet 
(29) is semiholonomic. 

Proof. Since V r / : TN -> VY is a linear morphism, T V r / : TTN -> TVY is linear 
in both directions. Since A is semilinear, its vertical projection VA is linear in both 
directions. Hence VA ° TVrf is linear in both directions over v&0 o Tf and vr o Tf. 
The heart map is vr o Tf. Then our claim follows from Lemma 1. • 

Proposition 3. If we take A = VI\ then for every section s: M -> y we have 

(30) V VrV rs(x) = /i(V^(a:)). 

Proof. By (28), the coordinate form of Vrs is yp = sp(x) and 

(3i) y=(|£-iT(Mx)))#. 

Using (5), we find VvrVrs in the form corresponding to (23). • 

4. Remarks. The groupoid approach to connections was invented by C. Ehresmann 
for Lie groupoids, which correspond to the classical principal fiber bundles, [6]. Every 
principal fiber bundle 7r: P -> M with structure group G determines the associated 
groupoid PP~~l which can be defined as the factor space P x P/ ~ with respect to 
the equivalence relation (u,v) ~ (ug,vg), u,v € P , g 6 G. Writing uv~~l for such 
an equivalence class, we have two projections o,6 : PP~~l -> M, a^uv)"1 = TTV, 
6(txv-1) = iTU. The formula 

(uv~~l) (vw"1) = uw~l 
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defines a partial composition law in PP~l and ex = uu~l is its unit for every x = 
7rix € M. By definition, a Lie groupoid $ over M is isomorphic to PP~l for a principal 
bundle P -> M. If E is a fiber bundle associated with P with standard fiber S, every 
v e Px determines the "frame map" qv : S -> i ^ , [13]. Then qu o g"1 : £7X —> Ey, 
u e Py , depends on uv~x only. This defines a map PP~l -> QE, which is called the 
action of PP~l on .E. 

An element of connection on a Lie groupoid $ at x e M is 1-jet of a local map 
a : U —• $ of a neighbourhood UofxeM satisfying a(j(t*) = x, &a(tz) = u, a(x) = ex, 
[6]. The space of all elements of connection on $ is a fibered manifold Q$ -> M. A 
connection on $ is a section T : M -> Q$. If $ acts on a fibered manifold E -> M, T 
induces a connection T^ : .E -> J1!?, ^ ( y ) = ^ ( u K y ) , provided T(x) = jla(u). In 
particular, $ = PP""1 acts canonically on P and the connection Tp is principal. One 
verifies easily that the rule T -¥ Tp establishes a bijection between connections on 
PP~X and principal connections on P . For $ acting on 2.7, the absolute differentiation 
of sections of E with respect to a connection on $ was introduced by Ehresmann, 
[6]. The principal bundle form of this operation was studied in [10]. Section 2 of the 
present paper represents a generalization of these ideas to the infinite dimensional 
groupoid QY. 

We have already remarked in Section 1 that the first approach to the iterated 
absolute differentiation is related with the classical ideas of tensor calculus. On the 
other hand, the second approach is of different geometric character and its interest
ing applications can be found, e.g. in the theory of submanifolds of a space with 
Cartan connection, [9]. The connection in question determines the geometry of every 
submanifold 1V and the use of the contact elements generated by N, [13] (which are 
called jets of the submanifold N by some authors), eliminates any role of a linear 
connection on N. For example, the higher order torsions of 1V can be introduced in 
the framework of the second approach, [9]. 

5. Maps to the functional bundle. Consider two locally trivial fibered manifolds 
P i : Yi -> M, p2 : Y2 -* M and the functional bundle (1). Write p : F(YU Y2) -> M for 
the canonical projection. The set T{Y^ Y2) is a smooth space in the sense of Frolicher, 
[2]. A connection Y on T(Yx,Y2) is a smooth section T : ?{YUY{) -> - / ^ ( Y i ^ ) , 
[2]. For every smooth map f : N -+ .^(Yi, Y2)i we can construct the tangent map 
Tf:TN-> TT(YUY2). Using the vertical projection vr : TT(YUY2) -+ Vr^(Yi,y2) 
of T, we define the absolute differential 

(32) V r/ = vroTf:TN^ VF(YU Y2). 

By linearity, (32) can be considered as a map N -> VF(Yi, Y2) ® T*N. 
We remark that the construction of V r / can be reduced to the absolute differ

entiation of a section of an induced bundle with respect to the induced connection 
analogously to the classical case of fibered manifolds. In general, if g : N —¥ M is a 
map, we construct the induced bundles g*Y^ i = 1,2, 

9*Yi = {(u,yi) eNxYi, g(u)=Pi(yi)} 

and define g*Jr(Yii Y2) = T(g*Y\^g*Y2)^ which is a smooth space over 1V. If s : M -> 
^(Yi, Y2) is a smooth section, the formula (g*s)(u) = s(g(u)) defines the induced 
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section g*s: N -> g*F(YuY2). The rule j^s i-> j^g*s defines a map JlT(yuY2) -> 
Jl(g*J:(Yu y2)), x = g(u). In this way, every connection V : T(YX,Y2) -> J1J:(Y1, Y2) 
induces a connection ^ T : g*T(X\, Y2) -> Jlg*F(Yi, Y2). Every smooth map / : 1V -> 
F(Yi, y2) with g = pof defines a section g*f : N -> ^ ^ ( Y i , Y2). Then we have an 
identification 

(33) V r / « V , . r 0 7 -

Since T : .F(Yi, Y2) -> J1F(Yi, Y2) is a kind of differential operator, one can char
acterize an r-th order connection, r > 1, [2]. We recall that every X € J ^ ^ Y i , Y^^ 
is identified with an affine bundle morphism X : JXY\ -> JXY2 over (p : Y\x ->• Y2x, 
whose derived Hnear morphism is Tip ® idr*M- We say that T is of order r, if the 
condition jT

yip = ; J^ , 9, if) e C°°(Ylx, Y2x), y 6 YXx implies 

(34) r(v)l(J1-'i)---rWI(J1-'i). !M 

i.e. the restriction of the associated maps r(y>), T(^) : J-jYi -> J^Y2 to the fiber 
(JlYi)y over y coincide. 

Write «7\7r(Yi,y2) = |J J r(Yi«,y2x), which is a finite dimensional manifold. 
zEAf 

If xl,yp or xl,za are some local fiber coordinates on Yi or y2, respectively, then 
the induced coordinates on TJT{YUY2) are xi,yp

iz
a

J where a is a multiindex of 
the range equal to the range of yp with 0 < |a| < r. Let 5(J1Yi, JlY2) be the 
space of all affine maps (J1Yi)J/ -> (JXY2)Z with the derived linear map of the form 
B ® id-f^M- B € l^y2 ® V*Yi. An r-th order connection T determines the associated 
map g : V j r ( y i , y 2 ) -> S(JlYuJ

xY2) by (34). Its coordinate form is 

(35) «f = ^ » f + * f ( * ' , » p , < ) , 0 < | a | < r . 

We say that $a is the coordinate expression of T. Analogously to [2], if x* = /*(ix), 
za = fa(u,y) is the coordinate form of / : 1V -> .F(yi, Y2), then the coordinate 
expression of V r / is 

(36) (-Җ-^-*ľ(»ł(«),»p,ввf >'*)>§£)"' 
6. The second order procedure. In the remaining two sections we assume T is 
a finite order connection. Its vertical prolongation Vr : VJr(Yi,Y2) —> J1VJ:(Yi}Y2) 
is a semilinear connection, [4]. Thus, for every map F : N —> T{Y\> Y2) we construct 
the iterated absolute differential 

(37) V v r ( V r / ) : TTN -> VVT(YU Y2). 

We are going to deduce that the value of (37) at each u e N corresponds to a 
semiholonomic 2-jet of N into C00(YixjY2x), x = p(f(u)). 



132 ANTONELLA CABRAS - IVAN K O L A R 

The non-holonomic and semiholonomic 2-jets of 1V into any functional bundle 
Jr(YiiY2) (C°°(Yix,Y2x) is the case of one-point base) can be introduced as a spe
cial case of the iterated 2-jets studied in [4]. In particular, for the product bundles 
Y1 = MxQuY2 = Mx Q2, we have T(YU Y2) = M x C°°(QU Q2) and Section 6 of 
[4] gives the following identifications 

(38) P(N,Mx C°°(QuQ2)) = J*(N,M) xN C~(Qi,P(iV,Q2)), 
(39) P(N,M x Cr»(QuQa)) = P(N,M) xN C^(QUP(N,Q2)), 
where the subscript a indicates that we consider the maps into the fibers of the jet 
prolongation a : J2(N,Q) -> N or a : J2(N,Q) -> N. On the other hand, as a 
special case of Proposition 1 of [12], we obtain another trivialization formula 

(40) TT(M x C°°(Qi, Q2)) = TTM x C°°(QU TTQ2). 

Every element X e Jl(N,T{XuY2))^ is of the form X = j*a(v). Each a(v) e 
J:}(1V,.F(Yi, Y2)) is identified with a linear map fia(v) : TVN -> r ^ Y i , Y2), so that 
X defines a map 

(41) tiX : TTUN -> I T ^ Y i , Y2), »X = Tu»(a(v)). 

Proposition 4. For every u€ N, there exists a unique element 

V*/(tO e J^(N,C0°(YlxjY2x))f{uh 

* =p(f(u)), satisfying 
(42) VvrVr/(tx) = /i(V^/(u)). 

Proof. In the same way as in the proof of Proposition 2 we deduce that VvrVr/ 
satisfies the functional modification of Lemma 1 with the semiholonomicity condition. 
Using the trivializations (39) and (40), we can apply Lemma 1 pointwise. 

• 
7. Relations to the curvature. For a finite order connection T with the coordinate 
expression $a from (35), the additional coordinate expression of Vr is 

d#a u d$a u 

M lFzb+- + UZi 

with Z\ = dz^, [4], If za = fa(x, y) is the coordinate expression of a section s : M —> 
^"(YijY^), then we obtain the coordinate form Vr** as a special case of (36) 

(44) (^j£T-* - *r(*V.».H-\»))) X1 == ft*. 
Hence the coordinate form of the "second order term" in VvrVr/ is 

/ ft d$a d$a \ 

<45> (^w) - a-f/r—- «£«,(*)) *' ° -* 
Analogously to the formula (36) of [4], we find that the alternation in i and j of (45) 
is -(CT)(s(x)), where CT is the curvature of T, [2]._ 

We recall that every semiholonomic 2-jet X £ J„(1V,.F(Yi, Y2)),/, determines the 
deviation AX 6 T^T{Y\, Y2)®A2T*N, whose coordinate expression is just the alter
nation of the "second order" component of X, [2]. Hence we have proved 



ON THE SECOND ORDER ABSOLUTE DIFFERENTIATION 133 

Proposition 5. For every finite order connection T on ^(Yi, Y2) and every section 
s: M -•> T{Yi,Y2)t we have 

(46) A (V£s(x)) = -CT(s{x)), x e M. 
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